These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29677801)

  • 41. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.
    Yaakob Z; Bshish A; Ebshish A; Tasirin SM; Alhasan FH
    Materials (Basel); 2013 May; 6(6):2229-2239. PubMed ID: 28809270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of the Metal-Support Interaction and Electronic Effect Induced by Calcination Temperature Regulation and Their Effect on the Catalytic Performance of Glycerol Steam Reforming for Hydrogen Production.
    Zhu S; Wang Y; Lu J; Lu H; He S; Song D; Luo Y; Liu J
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835913
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NiO/M-Sil-1 Catalysts by
    Wei N; Zhang J; Zhong H; Pan L; Zhou Y; Cao C
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5831-5837. PubMed ID: 30961746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of support bio-templating in Ni/Al
    Roostaei T; Rahimpour MR
    Sci Rep; 2023 Oct; 13(1):16972. PubMed ID: 37813890
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autothermal reforming of propane over Ni-based hydrotalcite catalysts.
    Park SY; Kim JH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2010 May; 10(5):3175-9. PubMed ID: 20358916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of the addition of CeO
    Ishihara A; Tsujino H; Hashimoto T
    RSC Adv; 2021 Feb; 11(15):8530-8539. PubMed ID: 35423369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO
    Yu L; Sato K; Toriyama T; Yamamoto T; Matsumura S; Nagaoka K
    Chemistry; 2018 Jun; 24(35):8742-8746. PubMed ID: 29717523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts.
    Montini T; Singh R; Das P; Lorenzut B; Bertero N; Riello P; Benedetti A; Giambastiani G; Bianchini C; Zinoviev S; Miertus S; Fornasiero P
    ChemSusChem; 2010 May; 3(5):619-28. PubMed ID: 20422673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Syngas Production via Combined Steam and Carbon Dioxide Reforming of Methane Over Ni-Mo-Sb/Al₂O₃ Catalysts.
    Ryoo H; Ma BC; Kim YC
    J Nanosci Nanotechnol; 2019 Feb; 19(2):988-990. PubMed ID: 30360186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.
    Renny A; Santhosh V; Somkuwar N; Gokak DT; Sharma P; Bhargava S
    Bioresour Technol; 2016 Nov; 220():151-160. PubMed ID: 27566523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production.
    Chen T; Wu C; Liu R
    Bioresour Technol; 2011 Oct; 102(19):9236-40. PubMed ID: 21820897
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of a commercial water-gas shift catalyst and La modified Cu-based catalysts prepared by deposition-precipitation in methanol steam reforming.
    Özcan O; Akin AN
    Turk J Chem; 2022; 46(4):1069-1080. PubMed ID: 37538757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Propane Steam Reforming over Catalysts Derived from Noble Metal (Ru, Rh)-Substituted LaNiO
    Ramantani T; Bampos G; Vavatsikos A; Vatskalis G; Kondarides DI
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A strong bimetal-support interaction in ethanol steam reforming.
    Meng H; Yang Y; Shen T; Liu W; Wang L; Yin P; Ren Z; Niu Y; Zhang B; Zheng L; Yan H; Zhang J; Xiao FS; Wei M; Duan X
    Nat Commun; 2023 Jun; 14(1):3189. PubMed ID: 37268617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.
    Pereira EB; de la Piscina PR; Homs N
    Bioresour Technol; 2011 Feb; 102(3):3419-23. PubMed ID: 21044836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sustainable Production of Hydrogen by Steam Reforming of Ethanol Using Cobalt Supported on Nanoporous Zeolitic Material.
    da Costa-Serra JF; Navarro MT; Rey F; Chica A
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32998234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Fe Species of Ni-Based Catalysts for Efficient Low-Temperature Ethanol Steam Reforming.
    Wu Y; Pei C; Tian H; Liu T; Zhang X; Chen S; Xiao Q; Wang X; Gong J
    JACS Au; 2021 Sep; 1(9):1459-1470. PubMed ID: 34604855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects.
    Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA
    Chem Asian J; 2023 Sep; ():e202300641. PubMed ID: 37740712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.