These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29677808)

  • 1. Failure Analysis of Short-Circuited Lithium-Ion Battery with Nickel-Manganese-Cobalt/Graphite Electrode.
    Lee SM; Kim JY; Byeon JW
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6427-6430. PubMed ID: 29677808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization and Control of Chemically Induced Crack Formation in All-Solid-State Lithium-Metal Batteries with Sulfide Electrolyte.
    Otoyama M; Suyama M; Hotehama C; Kowada H; Takeda Y; Ito K; Sakuda A; Tatsumisago M; Hayashi A
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5000-5007. PubMed ID: 33470786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach.
    Nowak S; Winter M
    Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries.
    Jia L; Wang D; Yin T; Li X; Li L; Dai Z; Zheng L
    ACS Omega; 2022 May; 7(17):14562-14570. PubMed ID: 35557703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium-ion battery explosion aerosols: Morphology and elemental composition.
    Barone TL; Dubaniewicz TH; Friend SA; Zlochower IA; Bugarski AD; Rayyan NS
    Aerosol Sci Technol; 2021 Jul; 55(10):1183-1201. PubMed ID: 35923215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on low-temperature cycle failure mechanism of a ternary lithium ion battery.
    Wang S; Hu C; Yu R; Sun Z; Jin Y
    RSC Adv; 2022 Jul; 12(32):20755-20761. PubMed ID: 35919153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the electrical-thermal properties of lithium-ion battery materials in the NCM622/graphite system.
    Li H; Wu X; Fang S; Liu M; Bi S; Zhao T; Zhang X
    Front Chem; 2024; 12():1403696. PubMed ID: 38680457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.
    Matsushita T; Watanabe J; Nakao T; Yamashita S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i21. PubMed ID: 25359815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for quantitative analysis of gases evolving during formation applied on LiNi
    Leißing M; Winter M; Wiemers-Meyer S; Nowak S
    J Chromatogr A; 2020 Jul; 1622():461122. PubMed ID: 32376021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera.
    Wei C; Xia S; Huang H; Mao Y; Pianetta P; Liu Y
    Acc Chem Res; 2018 Oct; 51(10):2484-2492. PubMed ID: 29889493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolyte Oxidation Pathways in Lithium-Ion Batteries.
    Rinkel BLD; Hall DS; Temprano I; Grey CP
    J Am Chem Soc; 2020 Sep; 142(35):15058-15074. PubMed ID: 32697590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation Mechanisms at the Li
    Zhang W; Richter FH; Culver SP; Leichtweiss T; Lozano JG; Dietrich C; Bruce PG; Zeier WG; Janek J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22226-22236. PubMed ID: 29877698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries.
    Du H; Wang Y; Kang Y; Zhao Y; Tian Y; Wang X; Tan Y; Liang Z; Wozny J; Li T; Ren D; Wang L; He X; Xiao P; Mao E; Tavajohi N; Kang F; Li B
    Adv Mater; 2024 Jul; 36(29):e2401482. PubMed ID: 38695389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and Suppressing the Destructive Cobalt(II) Species in Graphite Interphase.
    Wang K; Xing L; Xu K; Zhou H; Li W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31490-31498. PubMed ID: 31364838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfocused X-ray study on precipitate formation in the separator region of nonaqueous Li-O(2) batteries.
    Shui JL; Okasinski JS; Zhao D; Almer JD; Liu DJ
    ChemSusChem; 2012 Dec; 5(12):2421-6. PubMed ID: 23047616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.
    Elia GA; Ulissi U; Mueller F; Reiter J; Tsiouvaras N; Sun YK; Scrosati B; Passerini S; Hassoun J
    Chemistry; 2016 May; 22(20):6808-14. PubMed ID: 26990320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.