These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29677809)

  • 1. Effect of Ball Milling on Electrochemical Properties of Sulfur/Polyacrylonitrile (SPAN) Cathode in Li/S Battery.
    Cho GB; Park HB; Jeong JS; Chae MR; Im YM; Han-Gyeol L; Sang-Hui P; Kim KW
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6431-6436. PubMed ID: 29677809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CeF
    Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of milling time on electrochemical properties of nano Si electrodes prepared by ball-milling.
    Cho GB; Choi SY; Noh JP; Jeon YM; Jung KT; Nam TH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6262-5. PubMed ID: 22121698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Wrapping Effect on Sulfur/Polyacrylonitrile Composite Cathode Materials for Lithium Sulfur Batteries.
    Krishnaveni K; Subadevi R; Radhika G; Premkumar T; Raja M; Liu WR; Sivakumar M
    J Nanosci Nanotechnol; 2018 Jan; 18(1):121-126. PubMed ID: 29768823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneously Porous Structure and Chemical Anchor: A Multifunctional Composite by One-Step Mechanochemical Strategy toward High-Performance and Safe Lithium-Sulfur Battery.
    Zhu ZY; Yang N; Chen XS; Chen SC; Wang XL; Wu G; Wang YZ
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41359-41369. PubMed ID: 30418015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.
    Xu J; Shui J; Wang J; Wang M; Liu HK; Dou SX; Jeon IY; Seo JM; Baek JB; Dai L
    ACS Nano; 2014 Oct; 8(10):10920-30. PubMed ID: 25290080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.
    Wei S; Ma L; Hendrickson KE; Tu Z; Archer LA
    J Am Chem Soc; 2015 Sep; 137(37):12143-52. PubMed ID: 26325146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Electrochemical Characterization of Sulfurized-Polyacrylonitrile Nanofiber Electrodes for Na/S Batteries Using Various Polyacrylonitrile Solutions.
    Seong M; Kim H; Kim C; Lim HS; Yoon DK; Kim TH; Ahn HJ
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7092-7095. PubMed ID: 32604563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium-Sulfur Battery.
    Zhang YZ; Wu ZZ; Pan GL; Liu S; Gao XP
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12436-12444. PubMed ID: 28322551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent bonding of sulfur nanoparticles to unzipped multiwalled carbon nanotubes for high-performance lithium-sulfur batteries.
    Qi S; Sun J; Ma J; Sun Y; Goossens K; Li H; Jia P; Fan X; Bielawski CW; Geng J
    Nanotechnology; 2019 Jan; 30(2):024001. PubMed ID: 30378565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Electrochemical Performance of PEG-MnO₂-Sulfur Composites Cathode Materials for Lithium-Sulfur Batteries.
    Radhika G; Subadevi R; Krishnaveni K; Liu WR; Sivakumar M
    J Nanosci Nanotechnol; 2018 Jan; 18(1):127-131. PubMed ID: 29768824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ternary Sulfur/Polyacrylonitrile/SiO₂ Composite Cathodes for High-Performance Sulfur/Lithium Ion Full Batteries.
    He Y; Shan Z; Tan T; Chen Z; Zhang Y
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Electrode Gravimetric Capacity of Li
    Xu J; Patil S; Koirala KP; Chen W; Campos-Mata A; Wang C; Roy S; Nanda J; Ajayan PM
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31711-31719. PubMed ID: 37339110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured Li₂S-C composites as cathode material for high-energy lithium/sulfur batteries.
    Cai K; Song MK; Cairns EJ; Zhang Y
    Nano Lett; 2012 Dec; 12(12):6474-9. PubMed ID: 23190038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The adsorption effect of freestanding SiO
    Cengiz EC; Ansari Hamedani A; Hayat Soytas S; Demir-Cakan R
    Dalton Trans; 2019 Mar; 48(13):4353-4361. PubMed ID: 30860520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co
    Deng DR; Xue F; Jia YJ; Ye JC; Bai CD; Zheng MS; Dong QF
    ACS Nano; 2017 Jun; 11(6):6031-6039. PubMed ID: 28570815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphdiyne-like Porous Organic Framework as a Solid-Phase Sulfur Conversion Cathodic Host for Stable Li-S Batteries.
    Yi Y; Huang W; Tian X; Fang B; Wu Z; Zheng S; Li M; Ma H
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59983-59992. PubMed ID: 34889090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive.
    Kim HM; Hwang JY; Aurbach D; Sun YK
    J Phys Chem Lett; 2017 Nov; 8(21):5331-5337. PubMed ID: 29039678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li-S Batteries.
    Gao P; Xu S; Chen Z; Huang X; Bao Z; Lao C; Wu G; Mei Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3938-3947. PubMed ID: 29309733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.