BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 29678175)

  • 1. Gene repression via multiplex gRNA strategy in Y. lipolytica.
    Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ
    Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica.
    Misa J; Schwartz C
    Methods Mol Biol; 2021; 2307():95-109. PubMed ID: 33847984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in
    Ramesh A; Ong T; Garcia JA; Adams J; Wheeldon I
    ACS Synth Biol; 2020 Apr; 9(4):967-971. PubMed ID: 32208677
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome Editing, Transcriptional Regulation, and Forward Genetic Screening Using CRISPR-Cas12a Systems in Yarrowia lipolytica.
    Ramesh A; Lee S; Wheeldon I
    Methods Mol Biol; 2024; 2760():169-198. PubMed ID: 38468089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
    Schwartz CM; Hussain MS; Blenner M; Wheeldon I
    ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
    Abdel-Mawgoud AM; Stephanopoulos G
    Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Tools for Streamlined and Accelerated Pathway Engineering in Yarrowia lipolytica.
    Wong L; Holdridge B; Engel J; Xu P
    Methods Mol Biol; 2019; 1927():155-177. PubMed ID: 30788791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed CRISPR Activation of Cryptic Sugar Metabolism Enables Yarrowia Lipolytica Growth on Cellobiose.
    Schwartz C; Curtis N; Löbs AK; Wheeldon I
    Biotechnol J; 2018 Sep; 13(9):e1700584. PubMed ID: 29729131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.
    Gao S; Tong Y; Wen Z; Zhu L; Ge M; Chen D; Jiang Y; Yang S
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1085-93. PubMed ID: 27349768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system.
    Shi TQ; Huang H; Kerkhoven EJ; Ji XJ
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9541-9548. PubMed ID: 30238143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity.
    Larroude M; Trabelsi H; Nicaud JM; Rossignol T
    Biotechnol Lett; 2020 May; 42(5):773-785. PubMed ID: 31974649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in
    Feng Q; Ning X; Qin L; Li J; Li C
    Front Bioeng Biotechnol; 2023; 11():1218832. PubMed ID: 38026848
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.