BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29678326)

  • 1. The effects of the activation of the inner-hair-cell basolateral K
    Altoè A; Pulkki V; Verhulst S
    Hear Res; 2018 Jul; 364():68-80. PubMed ID: 29678326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LRRC52 regulates BK channel function and localization in mouse cochlear inner hair cells.
    Lingle CJ; Martinez-Espinosa PL; Yang-Hood A; Boero LE; Payne S; Persic D; V-Ghaffari B; Xiao M; Zhou Y; Xia XM; Pyott SJ; Rutherford MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18397-18403. PubMed ID: 31451634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves.
    Altoè A; Pulkki V; Verhulst S
    J Acoust Soc Am; 2017 Jun; 141(6):4438. PubMed ID: 28679269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea.
    Skinner LJ; Enée V; Beurg M; Jung HH; Ryan AF; Hafidi A; Aran JM; Dulon D
    J Neurophysiol; 2003 Jul; 90(1):320-32. PubMed ID: 12611976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positional analysis of guinea pig inner hair cell membrane conductances: implications for regulation of the membrane filter.
    Raybould NP; Jagger DJ; Housley GD
    J Assoc Res Otolaryngol; 2001 Dec; 2(4):362-76. PubMed ID: 11833609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The generation of DC potentials in a computational model of the organ of Corti: effects of voltage-dependent K+ channels in the basolateral membrane of the inner hair cell.
    van Emst MG; Giguère C; Smoorenburg GF
    Hear Res; 1998 Jan; 115(1-2):184-96. PubMed ID: 9472747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression.
    Lopez-Poveda EA; Eustaquio-Martín A
    J Assoc Res Otolaryngol; 2006 Sep; 7(3):218-35. PubMed ID: 16718614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound through Synergistic Activity of Six Independent K
    Dierich M; Altoè A; Koppelmann J; Evers S; Renigunta V; Schäfer MK; Naumann R; Verhulst S; Oliver D; Leitner MG
    Cell Rep; 2020 Jul; 32(1):107869. PubMed ID: 32640234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and developmental expression of BK channels in mammalian cochlear hair cells.
    Hafidi A; Beurg M; Dulon D
    Neuroscience; 2005; 130(2):475-84. PubMed ID: 15664704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells.
    Brandt A; Striessnig J; Moser T
    J Neurosci; 2003 Nov; 23(34):10832-40. PubMed ID: 14645476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery.
    Oliver D; Taberner AM; Thurm H; Sausbier M; Arntz C; Ruth P; Fakler B; Liberman MC
    J Neurosci; 2006 Jun; 26(23):6181-9. PubMed ID: 16763026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BK Channels in the Vertebrate Inner Ear.
    Pyott SJ; Duncan RK
    Int Rev Neurobiol; 2016; 128():369-99. PubMed ID: 27238269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-gated K(+) channels contributing to temporal precision at the inner hair cell-auditory afferent nerve fiber synapses in the mammalian cochlea.
    Oak MH; Yi E
    Arch Pharm Res; 2014 Jul; 37(7):821-33. PubMed ID: 24925343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
    Santarelli R; del Castillo I; Cama E; Scimemi P; Starr A
    Hear Res; 2015 Dec; 330(Pt B):200-12. PubMed ID: 26188103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling signal propagation in the human cochlea.
    Neely ST; Rasetshwane DM
    J Acoust Soc Am; 2017 Oct; 142(4):2155. PubMed ID: 29092611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation.
    Ruel J; Wang J; Demêmes D; Gobaille S; Puel JL; Rebillard G
    J Neurochem; 2006 Apr; 97(1):190-200. PubMed ID: 16524378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metabolic presbyacusis on cochlear responses: a simulation approach using a physiologically-based model.
    Saremi A; Stenfelt S
    J Acoust Soc Am; 2013 Oct; 134(4):2833-51. PubMed ID: 24116421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.
    Zhang L; Engler S; Koepcke L; Steenken F; Köppl C
    Hear Res; 2018 Jul; 364():81-89. PubMed ID: 29631778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.