These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29678391)

  • 1. Biofuel production utilizing a dual-phase cultivation system with filamentous cyanobacteria.
    Aoki J; Kawamata T; Kodaka A; Minakawa M; Imamura N; Tsuzuki M; Asayama M
    J Biotechnol; 2018 Aug; 280():55-61. PubMed ID: 29678391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanobacteria and microalgae: a positive prospect for biofuels.
    Parmar A; Singh NK; Pandey A; Gnansounou E; Madamwar D
    Bioresour Technol; 2011 Nov; 102(22):10163-72. PubMed ID: 21924898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction and easy recovery of biofuels from engineered cyanobacteria, autolyzing multicellular cells.
    Yoshida S; Takahashi M; Ikeda A; Fukuda H; Kitazaki C; Asayama M
    J Biochem; 2015 Jun; 157(6):519-27. PubMed ID: 25661591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculation and pentadecane production of a novel filamentous cyanobacterium Limnothrix sp. strain SK1-2-1.
    Sugawara T; Chinzei M; Numano S; Kitazaki C; Asayama M
    Biotechnol Lett; 2018 May; 40(5):829-836. PubMed ID: 29508163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.
    Weschler MK; Barr WJ; Harper WF; Landis AE
    Bioresour Technol; 2014 Feb; 153():108-15. PubMed ID: 24355501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review.
    Balasubramanian L; Subramanian G; Nazeer TT; Simpson HS; Rahuman ST; Raju P
    Biotechnol Appl Biochem; 2011; 58(4):220-5. PubMed ID: 21838795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Communities of Microalgae and Cyanobacteria from Eutrophicated Waters as Potential Co-substrates for Small-scale Biogas Production.
    Deže D; Mihaljević M; Kovačić Đ; Jovičić D; Kralik D
    Appl Biochem Biotechnol; 2020 Nov; 192(3):1016-1028. PubMed ID: 32627142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgal and cyanobacterial cultivation: the supply of nutrients.
    Markou G; Vandamme D; Muylaert K
    Water Res; 2014 Nov; 65():186-202. PubMed ID: 25113948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China.
    Xia L; Song S; He Q; Yang H; Hu C
    Bioresour Technol; 2014 Dec; 174():274-80. PubMed ID: 25463808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering.
    Aikawa S; Ho SH; Nakanishi A; Chang JS; Hasunuma T; Kondo A
    Biotechnol J; 2015 Jun; 10(6):886-98. PubMed ID: 25867926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Holistic Approach to Managing Microalgae for Biofuel Applications.
    Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; Maurya R; Trivedi K; Patidar SK; Ghosh A; Mishra S
    Bioresour Technol; 2015; 189():341-348. PubMed ID: 25911594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the Biological Contamination in Microalgae and Cyanobacteria Mass Cultivations for Photosynthetic Biofuel Production.
    Zhu Z; Jiang J; Fa Y
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33182530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attached cultivation technology of microalgae for efficient biomass feedstock production.
    Liu T; Wang J; Hu Q; Cheng P; Ji B; Liu J; Chen Y; Zhang W; Chen X; Chen L; Gao L; Ji C; Wang H
    Bioresour Technol; 2013 Jan; 127():216-22. PubMed ID: 23131644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial bio-fuels: a solution to carbon emissions and energy crisis.
    Kumar A; Kaushal S; Saraf SA; Singh JS
    Front Biosci (Landmark Ed); 2018 Jun; 23(10):1789-1802. PubMed ID: 29772529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures.
    Wahlen BD; Willis RM; Seefeldt LC
    Bioresour Technol; 2011 Feb; 102(3):2724-30. PubMed ID: 21123059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.
    Gomaa MA; Al-Haj L; Abed RM
    J Appl Microbiol; 2016 Oct; 121(4):919-31. PubMed ID: 27406848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.
    Mishra S; Singh N; Sarma AK
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2253-66. PubMed ID: 26093613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.
    Encarnação T; Pais AA; Campos MG; Burrows HD
    Sci Prog; 2015; 98(Pt 2):145-68. PubMed ID: 26288917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.