These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29678420)

  • 1. A novel validation and calibration method for motion capture systems based on micro-triangulation.
    Nagymáté G; Tuchband T; Kiss RM
    J Biomech; 2018 Jun; 74():16-22. PubMed ID: 29678420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a new calibration procedure and its experimental validation applied to a human motion capture system.
    Royo Sánchez AC; Aguilar Martín JJ; Santolaria Mazo J
    J Biomech Eng; 2014 Dec; 136(12):124502. PubMed ID: 25203903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume.
    Aurand AM; Dufour JS; Marras WS
    J Biomech; 2017 Jun; 58():237-240. PubMed ID: 28549599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    PLoS One; 2016; 11(8):e0160490. PubMed ID: 27513846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast method for calibrating video-based motion analysers using only a rigid bar.
    Borghese NA; Cerveri P; Rigiroli P
    Med Biol Eng Comput; 2001 Jan; 39(1):76-81. PubMed ID: 11214276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of accuracy in optical motion capture - A protocol for laboratory setup evaluation.
    Eichelberger P; Ferraro M; Minder U; Denton T; Blasimann A; Krause F; Baur H
    J Biomech; 2016 Jul; 49(10):2085-2088. PubMed ID: 27230474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of currently available optoelectronic motion capture systems.
    Topley M; Richards JG
    J Biomech; 2020 Jun; 106():109820. PubMed ID: 32517978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a low-cost inertial motion capture system for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Muller A; Larue C; Plamondon A
    J Biomech; 2020 Jan; 99():109520. PubMed ID: 31787261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel tool and procedure for in-situ volumetric calibration of motion capture systems for breathing analysis.
    Massaroni C; Schena E; Saccomandi P; Silvestri S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5797-5800. PubMed ID: 28269572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic accuracy and precision analysis of video motion capturing systems--exemplified on the Vicon-460 system.
    Windolf M; Götzen N; Morlock M
    J Biomech; 2008 Aug; 41(12):2776-80. PubMed ID: 18672241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of human motion capture systems for sport applications; state-of-the-art review.
    van der Kruk E; Reijne MM
    Eur J Sport Sci; 2018 Jul; 18(6):806-819. PubMed ID: 29741985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.
    Silvatti AP; Cerveri P; Telles T; Dias FA; Baroni G; Barros RM
    Comput Methods Biomech Biomed Engin; 2013; 16(11):1240-8. PubMed ID: 22435960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-trial anatomical frame alignment procedure for comparison of 3D joint angle measurement from magnetic/inertial measurement units and camera-based systems.
    Li Q; Zhang JT
    Physiol Meas; 2014 Nov; 35(11):2255-68. PubMed ID: 25340557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.
    Bisi MC; Stagni R; Caroselli A; Cappello A
    Med Eng Phys; 2015 Aug; 37(8):813-9. PubMed ID: 26077101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static accuracy analysis of Vicon T40s motion capture cameras arranged externally for motion capture in constrained aquatic environments.
    Raghu SL; Kang CK; Whitehead P; Takeyama A; Conners R
    J Biomech; 2019 May; 89():139-142. PubMed ID: 31030892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the performance of a motion capture system for small displacement recording and a discussion for its application potential in bone deformation in vivo measurements.
    Yang PF; Sanno M; Brüggemann GP; Rittweger J
    Proc Inst Mech Eng H; 2012 Nov; 226(11):838-47. PubMed ID: 23185954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Calibration Method for a Laser Triangulation Scanner Mounted on a Robot Arm for Surface Mapping.
    Idrobo-Pizo GA; Motta JMST; Sampaio RC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Setup for Error Compensation in a Laser Triangulation System.
    Kienle P; Batarilo L; Akgül M; Köhler MH; Wang K; Jakobi M; Koch AW
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based motion capture marker location refinement approach using inverse kinematics from dynamic trials.
    Price MA; LaPrè AK; Johnson RT; Umberger BR; Sup FC
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3283. PubMed ID: 31721456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.