These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29678587)

  • 41. Reconstitution of Membrane Proteins into Platforms Suitable for Biophysical and Structural Analyses.
    Schmidpeter PAM; Sukomon N; Nimigean CM
    Methods Mol Biol; 2020; 2127():191-205. PubMed ID: 32112324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding membrane proteins in vitro: a table and some comments.
    Popot JL
    Arch Biochem Biophys; 2014 Dec; 564():314-26. PubMed ID: 24997361
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amphipol-assisted in vitro folding of G protein-coupled receptors.
    Dahmane T; Damian M; Mary S; Popot JL; Banères JL
    Biochemistry; 2009 Jul; 48(27):6516-21. PubMed ID: 19534448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amphipathic polymers enable the study of functional membrane proteins in the gas phase.
    Leney AC; McMorran LM; Radford SE; Ashcroft AE
    Anal Chem; 2012 Nov; 84(22):9841-7. PubMed ID: 23072351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of amphipathic polymers to deliver a membrane protein to lipid bilayers.
    Nagy JK; Kuhn Hoffmann A; Keyes MH; Gray DN; Oxenoid K; Sanders CR
    FEBS Lett; 2001 Jul; 501(2-3):115-20. PubMed ID: 11470268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis.
    Kameo S; Aso M; Furukawa R; Matsumae R; Yokono M; Fujita T; Tanaka A; Tanaka R; Takabayashi A
    Plant Cell Physiol; 2021 May; 62(2):348-355. PubMed ID: 33399873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of amphipols for NMR structural characterization of 7-TM proteins.
    Elter S; Raschle T; Arens S; Viegas A; Gelev V; Etzkorn M; Wagner G
    J Membr Biol; 2014 Oct; 247(9-10):957-64. PubMed ID: 24858950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amphipols and fluorinated surfactants: Two alternatives to detergents for studying membrane proteins in vitro.
    Breyton C; Pucci B; Popot JL
    Methods Mol Biol; 2010; 601():219-45. PubMed ID: 20099149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Partial specific volume and solvent interactions of amphipol A8-35.
    Gohon Y; Pavlov G; Timmins P; Tribet C; Popot JL; Ebel C
    Anal Biochem; 2004 Nov; 334(2):318-34. PubMed ID: 15494140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amphipathic agents for membrane protein study.
    Sadaf A; Cho KH; Byrne B; Chae PS
    Methods Enzymol; 2015; 557():57-94. PubMed ID: 25950960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic traps in the folding of beta alpha-repeat proteins: CheY initially misfolds before accessing the native conformation.
    Kathuria SV; Day IJ; Wallace LA; Matthews CR
    J Mol Biol; 2008 Oct; 382(2):467-84. PubMed ID: 18619461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Trapping and stabilization of integral membrane proteins by hydrophobically grafted glucose-based telomers.
    Bazzacco P; Sharma KS; Durand G; Giusti F; Ebel C; Popot JL; Pucci B
    Biomacromolecules; 2009 Dec; 10(12):3317-26. PubMed ID: 20000638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Steric trapping strategy for studying the folding of helical membrane proteins.
    Yao J; Hong H
    Methods; 2024 May; 225():1-12. PubMed ID: 38428472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation.
    Catoire LJ; Zoonens M; van Heijenoort C; Giusti F; Popot JL; Guittet E
    J Magn Reson; 2009 Mar; 197(1):91-5. PubMed ID: 19101186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro studies of membrane protein folding.
    Booth PJ; Templer RH; Meijberg W; Allen SJ; Curran AR; Lorch M
    Crit Rev Biochem Mol Biol; 2001; 36(6):501-603. PubMed ID: 11798093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving extraction and post-purification concentration of membrane proteins.
    Feroz H; Kwon H; Peng J; Oh H; Ferlez B; Baker CS; Golbeck JH; Bazan GC; Zydney AL; Kumar M
    Analyst; 2018 Mar; 143(6):1378-1386. PubMed ID: 29220051
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amphipols in G protein-coupled receptor pharmacology: what are they good for?
    Mary S; Damian M; Rahmeh R; Mouillac B; Marie J; Granier S; Banères JL
    J Membr Biol; 2014 Oct; 247(9-10):853-60. PubMed ID: 24801284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro folding of alpha-helical membrane proteins.
    Kiefer H
    Biochim Biophys Acta; 2003 Feb; 1610(1):57-62. PubMed ID: 12586380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Folding and assembly of beta-barrel membrane proteins.
    Tamm LK; Hong H; Liang B
    Biochim Biophys Acta; 2004 Nov; 1666(1-2):250-63. PubMed ID: 15519319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy.
    Le Bon C; Michon B; Popot JL; Zoonens M
    Q Rev Biophys; 2021 Mar; 54():e6. PubMed ID: 33785082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.