These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 29678789)
21. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. Singh B; Satyanarayana T J Appl Microbiol; 2006 Aug; 101(2):344-52. PubMed ID: 16882141 [TBL] [Abstract][Full Text] [Related]
22. Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Ragon M; Aumelas A; Chemardin P; Galvez S; Moulin G; Boze H Appl Microbiol Biotechnol; 2008 Feb; 78(1):47-53. PubMed ID: 18046551 [TBL] [Abstract][Full Text] [Related]
23. Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum (BCC17694) phytase expressed in Pichia pastoris. Fugthong A; Boonyapakron K; Sornlek W; Tanapongpipat S; Eurwilaichitr L; Pootanakit K Protein Expr Purif; 2010 Mar; 70(1):60-7. PubMed ID: 19818856 [TBL] [Abstract][Full Text] [Related]
24. Exchanging the active site between phytases for altering the functional properties of the enzyme. Lehmann M; Lopez-Ulibarri R; Loch C; Viarouge C; Wyss M; van Loon AP Protein Sci; 2000 Oct; 9(10):1866-72. PubMed ID: 11106158 [TBL] [Abstract][Full Text] [Related]
25. Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization. Singh B; Satyanarayana T Bioresour Technol; 2008 Mar; 99(4):824-30. PubMed ID: 17350826 [TBL] [Abstract][Full Text] [Related]
26. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency. Niu C; Yang P; Luo H; Huang H; Wang Y; Yao B Sci Rep; 2017 Feb; 7():42133. PubMed ID: 28186144 [TBL] [Abstract][Full Text] [Related]
27. [Mutation research on Q23L and Q23LG272E in phytase derivated from Aspergillus fumigatus]. Gu WN; Yang PL; Wang YR; Luo HY; Meng K; Wu NF; Yao B; Fan YL Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):273-7. PubMed ID: 17460901 [TBL] [Abstract][Full Text] [Related]
28. Prediction of substrate-binding site and elucidation of catalytic residue of a phytase from Bacillus sp. Osman AA; Babu PR; Venu K; Rao KV; Reddy VD Enzyme Microb Technol; 2012 Jun; 51(1):35-9. PubMed ID: 22579388 [TBL] [Abstract][Full Text] [Related]
29. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Oh BC; Choi WC; Park S; Kim YO; Oh TK Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576 [TBL] [Abstract][Full Text] [Related]
30. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Kerovuo J; Rouvinen J; Hatzack F Biochem J; 2000 Dec; 352 Pt 3(Pt 3):623-8. PubMed ID: 11104666 [TBL] [Abstract][Full Text] [Related]
31. Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile. Subramaniam SS; Nagalla SR; Renganathan V Arch Biochem Biophys; 1999 May; 365(2):223-30. PubMed ID: 10328816 [TBL] [Abstract][Full Text] [Related]
32. Effect of myo-inositol(1,4,5)trisphosphate on the hydrolysis of phytic acid by phytase. Padmanabhan U; Dasgupta S; Biswas BB; Dasgupta D Indian J Biochem Biophys; 2001; 38(1-2):53-5. PubMed ID: 11563331 [TBL] [Abstract][Full Text] [Related]
33. Molecular and biochemical characteristics of recombinant β-propeller phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Kumar V; Sangwan P; Verma AK; Agrawal S Appl Biochem Biotechnol; 2014 May; 173(2):646-59. PubMed ID: 24687556 [TBL] [Abstract][Full Text] [Related]
34. Improving phytase enzyme activity in a recombinant phyA mutant phytase from Aspergillus niger N25 by error-prone PCR. Liao Y; Zeng M; Wu ZF; Chen H; Wang HN; Wu Q; Shan Z; Han XY Appl Biochem Biotechnol; 2012 Feb; 166(3):549-62. PubMed ID: 22101445 [TBL] [Abstract][Full Text] [Related]
35. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency. Li Z; Huang H; Yang P; Yuan T; Shi P; Zhao J; Meng K; Yao B FEBS J; 2011 Sep; 278(17):3032-40. PubMed ID: 21707924 [TBL] [Abstract][Full Text] [Related]
36. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Rodriguez E; Wood ZA; Karplus PA; Lei XG Arch Biochem Biophys; 2000 Oct; 382(1):105-12. PubMed ID: 11051103 [TBL] [Abstract][Full Text] [Related]
37. Crystal structures of Escherichia coli phytase and its complex with phytate. Lim D; Golovan S; Forsberg CW; Jia Z Nat Struct Biol; 2000 Feb; 7(2):108-13. PubMed ID: 10655611 [TBL] [Abstract][Full Text] [Related]
38. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Barrientos L; Scott JJ; Murthy PP Plant Physiol; 1994 Dec; 106(4):1489-95. PubMed ID: 7846160 [TBL] [Abstract][Full Text] [Related]
39. Identification, characterization, and overexpression of a phytase with potential industrial interest. Shi XW; Sun ML; Zhou B; Wang XY Can J Microbiol; 2009 May; 55(5):599-604. PubMed ID: 19483788 [TBL] [Abstract][Full Text] [Related]
40. N-terminal domain of the beta-propeller phytase of Pseudomonas sp. FB15 plays a role for retention of low-temperature activity and catalytic efficiency. Jang WJ; Lee JM; Park HD; Choi YB; Kong IS Enzyme Microb Technol; 2018 Oct; 117():84-90. PubMed ID: 30037556 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]