These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29678875)

  • 41. Neurophysiology of locomotor automatism.
    Shik ML; Orlovsky GN
    Physiol Rev; 1976 Jul; 56(3):465-501. PubMed ID: 778867
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury.
    Shah PK; Sureddi S; Alam M; Zhong H; Roy RR; Edgerton VR; Gerasimenko Y
    J Neurotrauma; 2016 Sep; 33(18):1709-23. PubMed ID: 26792233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redundancy and multifunctionality among spinal locomotor networks.
    Pham BN; Luo J; Anand H; Kola O; Salcedo P; Nguyen C; Gaunt S; Zhong H; Garfinkel A; Tillakaratne N; Edgerton VR
    J Neurophysiol; 2020 Nov; 124(5):1469-1479. PubMed ID: 32966757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of c-fos to identify activity-dependent spinal neurons after stepping in intact adult rats.
    Ahn SN; Guu JJ; Tobin AJ; Edgerton VR; Tillakaratne NJ
    Spinal Cord; 2006 Sep; 44(9):547-59. PubMed ID: 16344852
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The capacity for generation of rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat.
    Deliagina TG; Orlovsky GN; Pavlova GA
    Exp Brain Res; 1983; 53(1):81-90. PubMed ID: 6674000
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion.
    Hurteau MF; Thibaudier Y; Dambreville C; Desaulniers C; Frigon A
    J Neurophysiol; 2015 Jan; 113(2):669-76. PubMed ID: 25339715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activity of interneurons within the L4 spinal segment of the cat during brainstem-evoked fictive locomotion.
    Shefchyk S; McCrea D; Kriellaars D; Fortier P; Jordan L
    Exp Brain Res; 1990; 80(2):290-5. PubMed ID: 2358044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat.
    Gossard JP; Brownstone RM; Barajon I; Hultborn H
    Exp Brain Res; 1994; 98(2):213-28. PubMed ID: 8050508
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Symmetry-breaking bifurcation: a possible mechanism for 2:1 frequency-locking in animal locomotion.
    Collins JJ; Stewart IN
    J Math Biol; 1992; 30(8):827-38. PubMed ID: 1431615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Locomotion induced by epidural stimulation in decerebrate cat after spinal cord injury].
    Musienko PE; Pavlova NV; Selionov VA; Gerasimenko IuP
    Biofizika; 2009; 54(2):293-300. PubMed ID: 19402542
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Analysis of locomotor activity in decerebrated cats during electromagnetic and epidural electrical spinal cord stimulation].
    Bogacheva IN; Musienko PE; Shcherbakova NA; Moshonkina TR; Savokhin AA; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2012 Sep; 98(9):1079-93. PubMed ID: 23293812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The role of skin afferent in regulation of locomotion evoked by electrical epidural stimulation of spinal cord in decerebrated cats].
    Dorofeev IIu; Avelev VD; Shcherbakova NA; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2007 Oct; 93(10):1112-22. PubMed ID: 18074785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].
    Musienko PE; Gorskiĭ OV; Kilimnik VA; Kozlovskaia IB; Courtine G; Edgerton VR; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2013 Mar; 99(3):392-405. PubMed ID: 23789442
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord.
    Tillakaratne NJ; de Leon RD; Hoang TX; Roy RR; Edgerton VR; Tobin AJ
    J Neurosci; 2002 Apr; 22(8):3130-43. PubMed ID: 11943816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats.
    Norton JA; Mushahwar VK
    Ann N Y Acad Sci; 2010 Jun; 1198():10-20. PubMed ID: 20536916
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats.
    Barthélemy D; Leblond H; Provencher J; Rossignol S
    J Neurophysiol; 2006 Dec; 96(6):3273-92. PubMed ID: 16943319
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Activity of spinal cord neurons and their responses to stimulation of the "stepping" strip during spontaneous locomotor rhythmicity].
    Kazennikov OV; Shik ML; Budakova NN
    Fiziol Zh SSSR Im I M Sechenova; 1987 May; 73(5):644-50. PubMed ID: 3622828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats.
    Barthélemy D; Leblond H; Rossignol S
    J Neurophysiol; 2007 Mar; 97(3):1986-2000. PubMed ID: 17215509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord.
    Mahmood R; Restrepo CE; El Manira A
    Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.