These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 29679031)
1. Exploring drying pattern of a sessile droplet of genomic DNA in the presence of hematite nanoparticles. Bhar R; Kaur G; Mehta SK Sci Rep; 2018 Apr; 8(1):6352. PubMed ID: 29679031 [TBL] [Abstract][Full Text] [Related]
3. Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles. Bhar R; Kaur G; Mehta SK J Biomol Struct Dyn; 2018 Nov; 36(14):3614-3622. PubMed ID: 29082851 [TBL] [Abstract][Full Text] [Related]
4. Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe Ali K; Ahmed B; Khan MS; Musarrat J J Photochem Photobiol B; 2018 Nov; 188():146-158. PubMed ID: 30267964 [TBL] [Abstract][Full Text] [Related]
5. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Aksu Demirezen D; Yıldız YŞ; Yılmaz Ş; Demirezen Yılmaz D J Biosci Bioeng; 2019 Feb; 127(2):241-245. PubMed ID: 30348486 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. Rajendran K; Karunagaran V; Mahanty B; Sen S Int J Biol Macromol; 2015 Mar; 74():376-81. PubMed ID: 25542166 [TBL] [Abstract][Full Text] [Related]
8. High-yield synthesis of well-crystalline alpha-Fe2O3 nanoparticles: structural, optical and photocatalytic properties. Umar A; Abaker M; Faisal M; Hwang SW; Baskoutas S; Al-Sayari SA J Nanosci Nanotechnol; 2011 Apr; 11(4):3474-80. PubMed ID: 21776726 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Sohrabijam Z; Saeidifar M; Zamanian A Colloids Surf B Biointerfaces; 2017 Apr; 152():169-175. PubMed ID: 28110038 [TBL] [Abstract][Full Text] [Related]
10. Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route. Sivakumar S; Anusuya D; Khatiwada CP; Sivasubramanian J; Venkatesan A; Soundhirarajan P Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():69-75. PubMed ID: 24681311 [TBL] [Abstract][Full Text] [Related]
11. Iron Oxide (α-Fe2O3) Nanoparticles as an Anode Material for Lithium Ion Battery. Hwang SW; Umar A; Kim SH J Nanosci Nanotechnol; 2015 Jul; 15(7):5129-34. PubMed ID: 26373090 [TBL] [Abstract][Full Text] [Related]
12. Optimization of hematite nanoparticles from natural ore as novel imaging agents: A Green Chemistry approach. Asha A; Chamundeeswari M; Flora RMN; Preethy KR Biotechnol Appl Biochem; 2024 Aug; 71(4):791-808. PubMed ID: 38486404 [TBL] [Abstract][Full Text] [Related]
13. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Ezhuthupurakkal PB; Polaki LR; Suyavaran A; Subastri A; Sujatha V; Thirunavukkarasu C Mater Sci Eng C Mater Biol Appl; 2017 May; 74():597-608. PubMed ID: 28254334 [TBL] [Abstract][Full Text] [Related]
14. Microwave synthesis of nanoparticles and their antifungal activities. Henam SD; Ahmad F; Shah MA; Parveen S; Wani AH Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():337-341. PubMed ID: 30711904 [TBL] [Abstract][Full Text] [Related]
15. Green synthesis and physiochemical characterization of nickel oxide nanoparticles: Interaction studies with Calf thymus DNA. Sarkar N; Sharma RS; Kaushik M Luminescence; 2020 Mar; 35(2):178-186. PubMed ID: 31633294 [TBL] [Abstract][Full Text] [Related]
16. Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens. Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Salunke BK; Patil SV Int J Cosmet Sci; 2014 Dec; 36(6):571-8. PubMed ID: 25124731 [TBL] [Abstract][Full Text] [Related]
17. Synthesis-Dependent Surface Defects and Morphology of Hematite Nanoparticles and Their Effect on Cytotoxicity in Vitro. Cardillo D; Tehei M; Hossain MS; Islam MM; Bogusz K; Shi D; Mitchell D; Lerch M; Rosenfeld A; Corde S; Konstantinov K ACS Appl Mater Interfaces; 2016 Mar; 8(9):5867-76. PubMed ID: 26881459 [TBL] [Abstract][Full Text] [Related]
18. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. M S; K B; M B; S J; S A; A S; P N; R S J Photochem Photobiol B; 2017 Jun; 171():117-124. PubMed ID: 28501689 [TBL] [Abstract][Full Text] [Related]
19. Superparamagnetic hematite spheroids synthesis, characterization, and catalytic activity. Vinayagam R; Patnaik Y; Brijesh P; Prabhu D; Quadras M; Pai S; Narasimhan MK; Kaviyarasu K; Varadavenkatesan T; Selvaraj R Chemosphere; 2022 May; 294():133730. PubMed ID: 35085619 [TBL] [Abstract][Full Text] [Related]
20. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. Yuan Y; Ding J; Xu J; Deng J; Guo J J Nanosci Nanotechnol; 2010 Aug; 10(8):4868-74. PubMed ID: 21125821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]