BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29679217)

  • 1. Spatiotemporal Imaging of Cellular Energy Metabolism with Genetically-Encoded Fluorescent Sensors in Brain.
    Zhang Z; Chen W; Zhao Y; Yang Y
    Neurosci Bull; 2018 Oct; 34(5):875-886. PubMed ID: 29679217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lighting Up Live-Cell and In Vivo Central Carbon Metabolism with Genetically Encoded Fluorescent Sensors.
    Zhang Z; Cheng X; Zhao Y; Yang Y
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):293-314. PubMed ID: 32119572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators.
    Wang H; Jing M; Li Y
    Curr Opin Neurobiol; 2018 Jun; 50():171-178. PubMed ID: 29627516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.
    Zhao Y; Zhang Z; Zou Y; Yang Y
    Antioxid Redox Signal; 2018 Jan; 28(3):213-229. PubMed ID: 28648094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.
    Dienel GA
    J Neurosci Res; 2017 Nov; 95(11):2103-2125. PubMed ID: 28151548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD
    Zhao Y; Yang Y
    Free Radic Biol Med; 2016 Nov; 100():43-52. PubMed ID: 27261194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor.
    Díaz-García CM; Lahmann C; Martínez-François JR; Li B; Koveal D; Nathwani N; Rahman M; Keller JP; Marvin JS; Looger LL; Yellen G
    J Neurosci Res; 2019 Aug; 97(8):946-960. PubMed ID: 31106909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume.
    Dienel GA; Rothman DL
    J Neurochem; 2024 May; 168(5):506-532. PubMed ID: 36726217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors.
    Okumoto S
    Curr Opin Biotechnol; 2010 Feb; 21(1):45-54. PubMed ID: 20167470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic and genetically encoded fluorescent neural activity indicators.
    Deo C; Lavis LD
    Curr Opin Neurobiol; 2018 Jun; 50():101-108. PubMed ID: 29454295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities.
    Wang A; Feng J; Li Y; Zou P
    ACS Chem Neurosci; 2018 Apr; 9(4):639-650. PubMed ID: 29482322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use.
    Koveal D
    J Neurochem; 2024 May; 168(5):496-505. PubMed ID: 37314388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Probes for Neurobiological Sensing and Imaging.
    Kim EH; Chin G; Rong G; Poskanzer KE; Clark HA
    Acc Chem Res; 2018 May; 51(5):1023-1032. PubMed ID: 29652127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors.
    Zou Y; Wang A; Shi M; Chen X; Liu R; Li T; Zhang C; Zhang Z; Zhu L; Ju Z; Loscalzo J; Yang Y; Zhao Y
    Nat Protoc; 2018 Oct; 13(10):2362-2386. PubMed ID: 30258175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semisynthesis of fluorescent metabolite sensors on cell surfaces.
    Brun MA; Griss R; Reymond L; Tan KT; Piguet J; Peters RJ; Vogel H; Johnsson K
    J Am Chem Soc; 2011 Oct; 133(40):16235-42. PubMed ID: 21879732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors.
    Gruenwald K; Holland JT; Stromberg V; Ahmad A; Watcharakichkorn D; Okumoto S
    PLoS One; 2012; 7(6):e38591. PubMed ID: 22723868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.