BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29679268)

  • 1. Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations.
    Lin H; Liu J; Dong Y; Ren K; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17820-17829. PubMed ID: 29679268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of substrates on the removal of low-level vanadium, chromium and cadmium from polluted river water by ecological floating beds.
    Lin H; Liu J; Dong Y; He Y
    Ecotoxicol Environ Saf; 2019 Mar; 169():856-862. PubMed ID: 30597785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mutual restraint effect between the expansion of Alternanthera philoxeroides (Mart.) Griseb and cadmium mobility in aquatic environment.
    Li J; Du Z; Zou CB; Dai Z; Du D; Yan C
    Ecotoxicol Environ Saf; 2018 Feb; 148():237-243. PubMed ID: 29065373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress.
    Ding B; Shi G; Xu Y; Hu J; Xu Q
    Environ Pollut; 2007 Jun; 147(3):800-3. PubMed ID: 17175077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation.
    Yuan Y; Yu S; Bañuelos GS; He Y
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22477-22487. PubMed ID: 27552994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea.
    Sepe A; Ciaralli L; Ciprotti M; Giordano R; Funari E; Costantini S
    Food Addit Contam; 2003 Jun; 20(6):543-52. PubMed ID: 12881127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of cadmium, chromium, lead, and vanadium from artificial wetlands using
    Ekperusi AO; Sikoki FD; Nwachukwu EO
    Int J Phytoremediation; 2024; 26(6):873-881. PubMed ID: 37897245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments.
    Shirinpur-Valadi A; Hatamzadeh A; Sedaghathoor S
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21340-21350. PubMed ID: 31119548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment.
    Eid EM; Galal TM; Sewelam NA; Talha NI; Abdallah SM
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12138-12151. PubMed ID: 31984462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.
    Massadeh AM; El-Khateeb MY; Ibrahim SM
    Public Health; 2017 Aug; 149():130-137. PubMed ID: 28628796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vanadium(V) and/or chromium(III) on L-ascorbic acid and glutathione as well as iron, zinc, and copper levels in rat liver and kidney.
    Scibior A; Zaporowska H
    J Toxicol Environ Health A; 2007 Apr; 70(8):696-704. PubMed ID: 17365624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction of anthropogenic heavy metal contamination of the Blesbokspruit wetland: Potential of wetland macrophytes.
    Heisi HD; Awosusi AA; Nkuna R; Matambo TS
    J Contam Hydrol; 2023 Feb; 253():104101. PubMed ID: 36379730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and accumulation of a mixture of arsenic, cadmium, chromium, nickel, and vanadium in mouse small intestine, kidneys, pancreas, and femur following oral administration in water or feed.
    Radike M; Warshawsky D; Caruso J; Goth-Goldstein R; Reilman R; Collins T; Yaeger M; Wang J; Vela N; Olsen L; Schneider J
    J Toxicol Environ Health A; 2002 Dec; 65(23):2029-52. PubMed ID: 12490046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.
    Mishra VK; Tripathi BD
    Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.