These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29679325)

  • 1. Biofunctionalization of Poly(acrylamide) Gels.
    Paez JI; Farrukh A; Ustahüseyin O; Del Campo A
    Methods Mol Biol; 2018; 1758():101-114. PubMed ID: 29679325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifunctional Poly(acrylamide) Hydrogels through Orthogonal Coupling Chemistries.
    Farrukh A; Paez JI; Salierno M; Fan W; Berninger B; Del Campo A
    Biomacromolecules; 2017 Mar; 18(3):906-913. PubMed ID: 28147484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconjugating Thiols to Poly(acrylamide) Gels for Cell Culture Using Methylsulfonyl Co-monomers.
    Farrukh A; Paez JI; Salierno M; del Campo A
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2092-6. PubMed ID: 26836343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues.
    Grevesse T; Versaevel M; Gabriele S
    J Vis Exp; 2014 Aug; (90):. PubMed ID: 25225964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.
    Kwon HJ; Yasuda K
    J Mech Behav Biomed Mater; 2013 Jan; 17():337-46. PubMed ID: 23127629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Spatiotemporal Modification of Biocompatible and Stimuli-Responsive Carboxymethyl Cellulose Hydrogels Using Thiol-Norbornene Chemistry.
    Dadoo N; Landry SB; Bomar JD; Gramlich WM
    Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28671763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current strategies for ligand bioconjugation to poly(acrylamide) gels for 2D cell culture: Balancing chemo-selectivity, biofunctionality, and user-friendliness.
    Wolfel A; Jin M; Paez JI
    Front Chem; 2022; 10():1012443. PubMed ID: 36204147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical properties of high-toughness double network hydrogels.
    Yasuda K; Ping Gong J; Katsuyama Y; Nakayama A; Tanabe Y; Kondo E; Ueno M; Osada Y
    Biomaterials; 2005 Jul; 26(21):4468-75. PubMed ID: 15701376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli.
    Versaevel M; Grevesse T; Riaz M; Lantoine J; Gabriele S
    Methods Cell Biol; 2014; 121():33-48. PubMed ID: 24560501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surface biofunctionalization strategies on key effector cells response in polyacrylamide hydrogels for bone regeneration.
    Zhang Y; Dai J; Hang R; Yao X; Bai L; Huang D; Hang R
    Biomater Adv; 2024 Apr; 158():213768. PubMed ID: 38237320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels.
    Buyanov AL; Gofman IV; Revel'skaya LG; Khripunov AK; Tkachenko AA
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):102-11. PubMed ID: 19878907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative biomaterials that "click": simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning.
    Nimmo CM; Shoichet MS
    Bioconjug Chem; 2011 Nov; 22(11):2199-209. PubMed ID: 21995458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals.
    Liu M; Huang J; Luo B; Zhou C
    Int J Biol Macromol; 2015; 78():23-31. PubMed ID: 25841364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tough, precision-porous hydrogel scaffold: ophthalmologic applications.
    Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD
    Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels.
    Lee JP; Kassianidou E; MacDonald JI; Francis MB; Kumar S
    Biomaterials; 2016 Sep; 102():268-76. PubMed ID: 27348850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.
    Sun H; Wirsén A; Albertsson AC
    Biomacromolecules; 2004; 5(6):2275-80. PubMed ID: 15530042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.
    Halacheva SS; Adlam DJ; Hendow EK; Freemont TJ; Hoyland J; Saunders BR
    Biomacromolecules; 2014 May; 15(5):1814-27. PubMed ID: 24684558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.
    Ba OM; Hindie M; Marmey P; Gallet O; Anselme K; Ponche A; Duncan AC
    Colloids Surf B Biointerfaces; 2015 Oct; 134():73-80. PubMed ID: 26149946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Functionalized β-Cyclodextrins by Solid-Supported Synthesis.
    Vurgun N; Nitz M
    Chemistry; 2018 Mar; 24(17):4459-4467. PubMed ID: 29389050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Michael Addition Polymerization of Trifunctional Amine and Acrylic Monomer: A Versatile Platform for Development of Biomaterials.
    Cheng W; Wu D; Liu Y
    Biomacromolecules; 2016 Oct; 17(10):3115-3126. PubMed ID: 27599254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.