These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 29679933)
41. Relationship between radiographic patella-alta pathology and walking dysfunction in children with bilateral spastic Cerebral Palsy. Hösl M; Böhm H; Seltmann M; Dussa CU; Döderlein L Gait Posture; 2018 Feb; 60():28-34. PubMed ID: 29149666 [TBL] [Abstract][Full Text] [Related]
42. Crouch gait patterns defined using k-means cluster analysis are related to underlying clinical pathology. Rozumalski A; Schwartz MH Gait Posture; 2009 Aug; 30(2):155-60. PubMed ID: 19535249 [TBL] [Abstract][Full Text] [Related]
43. Contractile behavior of the medial gastrocnemius in children with bilateral spastic cerebral palsy during forward, uphill and backward-downhill gait. Hösl M; Böhm H; Arampatzis A; Keymer A; Döderlein L Clin Biomech (Bristol, Avon); 2016 Jul; 36():32-9. PubMed ID: 27208665 [TBL] [Abstract][Full Text] [Related]
44. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking. Bastien GJ; Gosseye TP; Penta M Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439 [TBL] [Abstract][Full Text] [Related]
45. Crouch gait changes after planovalgus foot deformity correction in ambulatory children with cerebral palsy. Kadhim M; Miller F Gait Posture; 2014 Feb; 39(2):793-8. PubMed ID: 24316233 [TBL] [Abstract][Full Text] [Related]
46. Effect of supporting 3D-garment on gait postural stability in children with bilateral spastic cerebral palsy. Degelaen M; De Borre L; Buyl R; Kerckhofs E; De Meirleir L; Dan B NeuroRehabilitation; 2016 Jun; 39(2):175-81. PubMed ID: 27341370 [TBL] [Abstract][Full Text] [Related]
47. Influence of Crouch Angle on Postural Stability in Quiet Stance and Functional Tasks Among Children with Cerebral Palsy. Shetty T; Mullerpatan R; Ganesan S Dev Neurorehabil; 2023; 26(6-7):360-363. PubMed ID: 37732404 [TBL] [Abstract][Full Text] [Related]
48. The paediatric version of Wisconsin gait scale, adaptation for children with hemiplegic cerebral palsy: a prospective observational study. Guzik A; Drużbicki M; Kwolek A; Przysada G; Bazarnik-Mucha K; Szczepanik M; Wolan-Nieroda A; Sobolewski M BMC Pediatr; 2018 Sep; 18(1):301. PubMed ID: 30219044 [TBL] [Abstract][Full Text] [Related]
49. Effects of age-related changes in step length and step width on the required coefficient of friction during straight walking. Yamaguchi T; Masani K Gait Posture; 2019 Mar; 69():195-201. PubMed ID: 30772623 [TBL] [Abstract][Full Text] [Related]
50. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy. Choi H; Wren TAL; Steele KM Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590 [TBL] [Abstract][Full Text] [Related]
51. The use of turning tasks in clinical gait analysis for children with cerebral palsy. Dixon PC; Stebbins J; Theologis T; Zavatsky AB Clin Biomech (Bristol, Avon); 2016 Feb; 32():286-94. PubMed ID: 26549659 [TBL] [Abstract][Full Text] [Related]
52. Decrease in required coefficient of friction due to smaller lean angle during turning in older adults. Yamaguchi T; Okamoto R; Hokkirigawa K; Masani K J Biomech; 2018 Jun; 74():163-170. PubMed ID: 29752052 [TBL] [Abstract][Full Text] [Related]
53. Knee joint sagittal plane movement in cerebral palsy: a comparative study of 2-dimensional markerless video and 3-dimensional gait analysis. Pantzar-Castilla E; Cereatti A; Figari G; Valeri N; Paolini G; Della Croce U; Magnuson A; Riad J Acta Orthop; 2018 Dec; 89(6):656-661. PubMed ID: 30558517 [TBL] [Abstract][Full Text] [Related]
54. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking. Yamaguchi T; Yano M; Onodera H; Hokkirigawa K Gait Posture; 2013 Jun; 38(2):209-14. PubMed ID: 23218767 [TBL] [Abstract][Full Text] [Related]
55. Foot kinematics in gait of children with cerebral palsy (CP). Dziuba A; Szpala A Acta Bioeng Biomech; 2008; 10(4):3-6. PubMed ID: 19385505 [TBL] [Abstract][Full Text] [Related]
56. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. Arnold AS; Anderson FC; Pandy MG; Delp SL J Biomech; 2005 Nov; 38(11):2181-9. PubMed ID: 16154404 [TBL] [Abstract][Full Text] [Related]
57. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic Cerebral Palsy. Hösl M; Böhm H; Eck J; Döderlein L; Arampatzis A Gait Posture; 2018 Sep; 65():121-128. PubMed ID: 30558918 [TBL] [Abstract][Full Text] [Related]
58. Effects of age-related gait changes on the biomechanics of slips and falls. Lockhart TE; Woldstad JC; Smith JL Ergonomics; 2003 Oct; 46(12):1136-60. PubMed ID: 12933077 [TBL] [Abstract][Full Text] [Related]
59. Temporal changes in the required shoe-floor friction when walking following an induced slip. Beringer DN; Nussbaum MA; Madigan ML PLoS One; 2014; 9(5):e96525. PubMed ID: 24789299 [TBL] [Abstract][Full Text] [Related]
60. Femoral derotation osteotomy in adults with cerebral palsy. Putz C; Wolf SI; Geisbüsch A; Niklasch M; Döderlein L; Dreher T Gait Posture; 2016 Sep; 49():290-296. PubMed ID: 27475618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]