These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29679935)

  • 1. The role of adsorbate size on adsorption of Ne and Xe on graphite.
    Prasetyo L; Loi QK; Johnathan Tan S; Do DD; Nicholson D
    J Colloid Interface Sci; 2018 Aug; 524():490-503. PubMed ID: 29679935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behavior of mixed Ar-Kr, Ar-Xe and Kr-Xe monolayer films on graphite: a Monte Carlo study.
    Patrykiejew A
    J Phys Condens Matter; 2013 Jan; 25(1):015001. PubMed ID: 23160409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.
    Patrykiejew A; Sokołowski S
    J Chem Phys; 2012 Apr; 136(14):144702. PubMed ID: 22502538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black.
    Wongkoblap A; Do DD; Nicholson D
    Phys Chem Chem Phys; 2008 Feb; 10(8):1106-13. PubMed ID: 18270611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective and accurate approach for modeling of commensurate-incommensurate transition in krypton monolayer on graphite.
    Ustinov EA
    J Chem Phys; 2014 Oct; 141(13):134706. PubMed ID: 25296827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GCMC simulation and experimental study of krypton adsorption/desorption hysteresis on a graphite surface.
    Prasetyo L; Horikawa T; Phadungbut P; Johnathan Tan S; Do DD; Nicholson D
    J Colloid Interface Sci; 2016 Sep; 478():402-12. PubMed ID: 27343464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface-perturbed intermolecular interaction on adsorption of simple gases on a graphitized carbon surface.
    Do DD; Do HD; Kaneko K
    Langmuir; 2004 Aug; 20(18):7623-9. PubMed ID: 15323511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation study of the low temperature phase diagram of the methane monolayer on graphite: a test of potential energy functions.
    Zhang H; Tan SJ; Prasetyo L; Do DD; Nicholson D
    Phys Chem Chem Phys; 2020 Aug; 22(30):17134-17144. PubMed ID: 32691031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of phase transitions and adsorption isotherm discontinuities on surface compression.
    Charniak CL; Wetzel TE; Aranovich GL; Donohue MD
    J Colloid Interface Sci; 2008 Aug; 324(1-2):9-14. PubMed ID: 18513735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of adsorption isotherms in Ono-Kondo coordinates.
    Sumanatrakul P; Abaza S; Aranovich GL; Sangwichien C; Donohue MD
    J Colloid Interface Sci; 2012 Feb; 368(1):427-33. PubMed ID: 22122946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.
    Kowalczyk P; Tanaka H; Kaneko K; Terzyk AP; Do DD
    Langmuir; 2005 Jun; 21(12):5639-46. PubMed ID: 15924500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.
    Madani SH; Sedghi S; Biggs MJ; Pendleton P
    Chemphyschem; 2015 Dec; 16(18):3797-805. PubMed ID: 26538339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the microscopic origin of the temperature evolution of isosteric heat for methane adsorption on graphite.
    Liu L; Zhang H; Do DD; Nicholson D; Liu J
    Phys Chem Chem Phys; 2017 Oct; 19(39):27105-27115. PubMed ID: 28967005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface mediation on the adsorption isotherm and heat of adsorption of argon on graphitized thermal carbon black.
    Fan C; Birkett G; Do DD
    J Colloid Interface Sci; 2010 Feb; 342(2):485-92. PubMed ID: 19914630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations on the effect of substrate geometry on adsorption and compression.
    Wetzel TE; Erickson JS; Donohue PS; Charniak CL; Aranovich GL; Donohue MD
    J Chem Phys; 2004 Jun; 120(24):11765-74. PubMed ID: 15268211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of methane adsorption on graphite.
    Albesa AG; Llanos JL; Vicente JL
    Langmuir; 2008 Apr; 24(8):3836-40. PubMed ID: 18338911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes.
    Anderson R; Schweitzer B; Wu T; Carreon MA; Gómez-Gualdrón DA
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):582-592. PubMed ID: 29256241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading.
    Do DD; Do HD
    Langmuir; 2004 Dec; 20(25):10889-99. PubMed ID: 15568838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.
    Diao R; Fan C; Do DD; Nicholson D
    J Colloid Interface Sci; 2015 Dec; 460():281-9. PubMed ID: 26364074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.