These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29679965)

  • 1. Phase separation and large deviations of lattice active matter.
    Whitelam S; Klymko K; Mandal D
    J Chem Phys; 2018 Apr; 148(15):154902. PubMed ID: 29679965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical self-assembly of dipolar active Brownian particles in two dimensions.
    Liao GJ; Hall CK; Klapp SHL
    Soft Matter; 2020 Mar; 16(9):2208-2223. PubMed ID: 32090218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical behavior in active lattice models of motility-induced phase separation.
    Dittrich F; Speck T; Virnau P
    Eur Phys J E Soft Matter; 2021 Apr; 44(4):53. PubMed ID: 33860860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coherent motions of thermal active Brownian particles.
    Yang C; Zeng Y; Xu S; Zhou X
    Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling rare fluctuations of discrete-time Markov chains.
    Whitelam S
    Phys Rev E; 2018 Mar; 97(3-1):032122. PubMed ID: 29776177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static structure of active Brownian hard disks.
    de Macedo Biniossek N; Löwen H; Voigtmann T; Smallenburg F
    J Phys Condens Matter; 2018 Feb; 30(7):074001. PubMed ID: 29271364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation and state oscillation of active inertial particles.
    Dai C; Bruss IR; Glotzer SC
    Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrupted Motility Induced Phase Separation in Aligning Active Colloids.
    van der Linden MN; Alexander LC; Aarts DGAL; Dauchot O
    Phys Rev Lett; 2019 Aug; 123(9):098001. PubMed ID: 31524482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare-event trajectory ensemble analysis reveals metastable dynamical phases in lattice proteins.
    Mey AS; Geissler PL; Garrahan JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032109. PubMed ID: 24730792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reentrant phase separation behavior of active particles with anisotropic Janus interaction.
    Pu M; Jiang H; Hou Z
    Soft Matter; 2017 Jun; 13(22):4112-4121. PubMed ID: 28548147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase separation and emergence of collective motion in a one-dimensional system of active particles.
    Barberis L; Peruani F
    J Chem Phys; 2019 Apr; 150(14):144905. PubMed ID: 30981266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering-induced velocity-reversals of active colloids mixed with passive particles.
    Hauke F; Löwen H; Liebchen B
    J Chem Phys; 2020 Jan; 152(1):014903. PubMed ID: 31914737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whirligig beetles as corralled active Brownian particles.
    Devereux HL; Twomey CR; Turner MS; Thutupalli S
    J R Soc Interface; 2021 Apr; 18(177):20210114. PubMed ID: 33849331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering and phase behaviour of attractive active particles with hydrodynamics.
    Navarro RM; Fielding SM
    Soft Matter; 2015 Oct; 11(38):7525-46. PubMed ID: 26278520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles.
    Speck T; Menzel AM; Bialké J; Löwen H
    J Chem Phys; 2015 Jun; 142(22):224109. PubMed ID: 26071703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles.
    Turci F; Wilding NB
    Phys Rev Lett; 2021 Jan; 126(3):038002. PubMed ID: 33543975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Velocity Alignment in Motility-Induced Phase Separation.
    Caprini L; Marini Bettolo Marconi U; Puglisi A
    Phys Rev Lett; 2020 Feb; 124(7):078001. PubMed ID: 32142346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.