BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29680053)

  • 1. Influence of cyanidin glycosylation patterns on carboxypyranoanthocyanin formation.
    Farr JE; Sigurdson GT; Giusti MM
    Food Chem; 2018 Sep; 259():261-269. PubMed ID: 29680053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Interaction of Ascorbic Acid with Anthocyanins and Pyranoanthocyanins.
    Farr JE; Giusti MM
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29570649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyranoanthocyanin formation rates and yields as affected by cyanidin-3-substitutions and pyruvic or caffeic acids.
    Zhu X; Giusti MM
    Food Chem; 2021 May; 345():128776. PubMed ID: 33340889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color properties of four cyanidin-pyruvic acid adducts.
    Oliveira J; Fernandes V; Miranda C; Santos-Buelga C; Silva A; de Freitas V; Mateus N
    J Agric Food Chem; 2006 Sep; 54(18):6894-903. PubMed ID: 16939355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the Anthocyanin and Cofactor Structure on the Formation Efficiency of Naturally Derived Pyranoanthocyanins.
    Miyagusuku-Cruzado G; Voss DM; Giusti MM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High yield production of cyanidin-derived pyranoanthocyanins using 4-vinylphenol and 4-vinylguaiacol as cofactors.
    Miyagusuku-Cruzado G; Voss DM; Ortiz-Santiago TN; Cheng Y; Giusti MM
    Food Chem; 2023 Nov; 427():136705. PubMed ID: 37406449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HPLC-DAD-ESI-MS/MS characterization of pyranoanthocyanins pigments formed in model wine.
    Blanco-Vega D; López-Bellido FJ; Alía-Robledo JM; Hermosín-Gutiérrez I
    J Agric Food Chem; 2011 Sep; 59(17):9523-31. PubMed ID: 21806064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice.
    Hillebrand S; Schwarz M; Winterhalter P
    J Agric Food Chem; 2004 Dec; 52(24):7331-8. PubMed ID: 15563216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemistry and glycosidic linkages of C3-glycosylations affected the reactivity of cyanidin derivatives.
    Farr JE; Sigurdson GT; Giusti MM
    Food Chem; 2019 Apr; 278():443-451. PubMed ID: 30583395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, isolation, structure elucidation, and color properties of 10-acetyl-pyranoanthocyanins.
    Gómez-Alonso S; Blanco-Vega D; Gómez MV; Hermosín-Gutiérrez I
    J Agric Food Chem; 2012 Dec; 60(49):12210-23. PubMed ID: 23167949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stability comparison between 10-catechyl-pyranoanthocyanins and anthocyanins derived from pelargonidin, cyanidin, and malvidin.
    Voss DM; Miyagusuku-Cruzado G; Giusti MM
    Food Chem; 2023 Mar; 403():134305. PubMed ID: 36182854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins.
    Garcia-Alonso M; Rimbach G; Sasai M; Nakahara M; Matsugo S; Uchida Y; Rivas-Gonzalo JC; De Pascual-Teresa S
    Mol Nutr Food Res; 2005 Dec; 49(12):1112-9. PubMed ID: 16254886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new class of blue anthocyanin-derived pigments isolated from red wines.
    Mateus N; Silva AM; Rivas-Gonzalo JC; Santos-Buelga C; de Freitas V
    J Agric Food Chem; 2003 Mar; 51(7):1919-23. PubMed ID: 12643652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS.
    Truong VD; Deighton N; Thompson RT; McFeeters RF; Dean LO; Pecota KV; Yencho GC
    J Agric Food Chem; 2010 Jan; 58(1):404-10. PubMed ID: 20017481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze.
    Montilla EC; Arzaba MR; Hillebrand S; Winterhalter P
    J Agric Food Chem; 2011 Apr; 59(7):3385-90. PubMed ID: 21381748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation.
    Li X; Teng Z; Luo Z; Yuan Y; Zeng Y; Hu J; Sun J; Bai W
    Food Chem; 2022 Mar; 372():131251. PubMed ID: 34624786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of location, type, and number of glycosidic substitutions on the color expression of o-dihydroxylated anthocyanidins.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2018 Dec; 268():416-423. PubMed ID: 30064778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthocyanins with 4'-glucosidation from red onion, Allium cepa.
    Fossen T; Slimestad R; Andersen M ØM
    Phytochemistry; 2003 Dec; 64(8):1367-74. PubMed ID: 14630001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatography with photodiode array detection (HPLC-DAD)/HPLC-mass spectrometry (MS) profiling of anthocyanins from Andean Mashua Tubers (Tropaeolum tuberosum Ruíz and Pavón) and their contribution to the overall antioxidant activity.
    Chirinos R; Campos D; Betalleluz I; Giusti MM; Schwartz SJ; Tian Q; Pedreschi R; Larondelle Y
    J Agric Food Chem; 2006 Sep; 54(19):7089-97. PubMed ID: 16968067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction between hydroxycinnamic acids and anthocyanin-pyruvic acid adducts yielding new portisins.
    Oliveira J; de Freitas V; Silva AM; Mateus N
    J Agric Food Chem; 2007 Jul; 55(15):6349-56. PubMed ID: 17602659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.