BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29680301)

  • 1. Quantification of hydroxyl radicals and solvated electrons produced by irradiated gold nanoparticles suggests a crucial role of interfacial water.
    Gilles M; Brun E; Sicard-Roselli C
    J Colloid Interface Sci; 2018 Sep; 525():31-38. PubMed ID: 29680301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.
    Leung MK; Chow JC; Chithrani BD; Lee MJ; Oms B; Jaffray DA
    Med Phys; 2011 Feb; 38(2):624-31. PubMed ID: 21452700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions.
    Sicard-Roselli C; Brun E; Gilles M; Baldacchino G; Kelsey C; McQuaid H; Polin C; Wardlow N; Currell F
    Small; 2014 Aug; 10(16):3338-46. PubMed ID: 24863679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Primary Water Radicals' Production in the Presence of Gold Nanoparticles: Electron Pulse Radiolysis Study.
    Shcherbakov V; Denisov SA; Mostafavi M
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33321905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons.
    Zheng Y; Sanche L
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation.
    Gilles M; Brun E; Sicard-Roselli C
    Colloids Surf B Biointerfaces; 2014 Nov; 123():770-7. PubMed ID: 25454667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies.
    Jeynes JC; Merchant MJ; Spindler A; Wera AC; Kirkby KJ
    Phys Med Biol; 2014 Nov; 59(21):6431-43. PubMed ID: 25296027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying Effects of Gold Nanoparticle on Dose Enhancement in Megavoltage Radiation.
    Khadem Abolfazli M; Mahdavi SR; Ataei G
    J Biomed Phys Eng; 2015 Dec; 5(4):185-90. PubMed ID: 26688797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells.
    Saberi A; Shahbazi-Gahrouei D; Abbasian M; Fesharaki M; Baharlouei A; Arab-Bafrani Z
    Int J Radiat Biol; 2017 Mar; 93(3):315-323. PubMed ID: 27690719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low- and high-LET radiations.
    Liu Y; Liu X; Jin X; He P; Zheng X; Dai Z; Ye F; Zhao T; Chen W; Li Q
    Phys Med; 2015 May; 31(3):210-8. PubMed ID: 25651760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron Paramagnetic Resonance Spectroscopy Investigation of Radical Production by Gold Nanoparticles in Aqueous Solutions Under X-ray Irradiation.
    Chang J; Taylor RD; Davidson RA; Sharmah A; Guo T
    J Phys Chem A; 2016 May; 120(18):2815-23. PubMed ID: 27124587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft X-ray Radiation and Monte Carlo Simulations: Good Tools to Describe the Radiation Chemistry of Sub-keV Electrons.
    Huart L; Nicolas C; Kaddissy JA; Guigner JM; Touati A; Politis MF; Mercere P; Gervais B; Renault JP; Hervé du Penhoat MA
    J Phys Chem A; 2020 Mar; 124(10):1896-1902. PubMed ID: 32118425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water.
    Mezyk SP; Ewing DB; Kiddle JJ; Madden KP
    J Phys Chem A; 2006 Apr; 110(14):4732-7. PubMed ID: 16599441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution.
    Brun E; Sanche L; Sicard-Roselli C
    Colloids Surf B Biointerfaces; 2009 Aug; 72(1):128-34. PubMed ID: 19414242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.
    Wardlow N; Polin C; Villagomez-Bernabe B; Currell F
    Radiat Res; 2015 Nov; 184(5):518-32. PubMed ID: 26488757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.
    Rezaee M; Sanche L; Hunting DJ
    Radiat Res; 2013 Mar; 179(3):323-31. PubMed ID: 23368416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.