BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 29680367)

  • 1. Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ.
    Yoon S; Nissen S; Park D; Sanford RA; Löffler FE
    Appl Environ Microbiol; 2016 Jul; 82(13):3793-800. PubMed ID: 27084012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clarifying Microbial Nitrous Oxide Reduction under Aerobic Conditions: Tolerant, Intolerant, and Sensitive.
    Wang Z; Vishwanathan N; Kowaliczko S; Ishii S
    Microbiol Spectr; 2023 Mar; 11(2):e0470922. PubMed ID: 36926990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning for modeling N
    Khalil M; AlSayed A; Liu Y; Vanrolleghem PA
    Water Res; 2023 Oct; 245():120667. PubMed ID: 37778084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biokinetic Characterization and Activities of N
    Suenaga T; Riya S; Hosomi M; Terada A
    Front Microbiol; 2018; 9():697. PubMed ID: 29692767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and oxygen level determine N
    Zhou Y; Suenaga T; Qi C; Riya S; Hosomi M; Terada A
    Biotechnol Bioeng; 2021 Mar; 118(3):1330-1341. PubMed ID: 33305820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of nitrous oxide reduction by
    Park HJ; Kwon JH; Yun J; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1459-1467. PubMed ID: 32960129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights.
    Qi C; Zhou Y; Suenaga T; Oba K; Lu J; Wang G; Zhang L; Yoon S; Terada A
    Water Res; 2022 Feb; 209():117910. PubMed ID: 34920314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Draft Genome Sequence of Azospira sp. Strain I13, a Nitrous Oxide-Reducing Bacterium Harboring Clade II Type
    Suenaga T; Aoyagi T; Hosomi M; Hori T; Terada A
    Genome Announc; 2018 May; 6(20):. PubMed ID: 29773628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Azospira sp. strain I13 by gel entrapment for mitigation of N
    Suenaga T; Aoyagi R; Sakamoto N; Riya S; Ohashi H; Hosomi M; Tokuyama H; Terada A
    J Biosci Bioeng; 2018 Aug; 126(2):213-219. PubMed ID: 29680367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes.
    Ni BJ; Yuan Z
    Water Res; 2015 Dec; 87():336-46. PubMed ID: 26451976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies- a critical review.
    Yao H; Gao X; Guo J; Wang H; Zhang L; Fan L; Jia F; Guo J; Peng Y
    Environ Pollut; 2022 Dec; 314():120295. PubMed ID: 36181929
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.