These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29680615)

  • 1. An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent.
    Saxena S; Rajoriya S; Saharan VK; George S
    Ultrason Sonochem; 2018 Jun; 44():299-309. PubMed ID: 29680615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling & simulation studies on batch anaerobic digestion of hydrodynamically cavitated tannery waste effluent for higher biogas yield.
    Saxena S; Saharan VK; George S
    Ultrason Sonochem; 2019 Nov; 58():104692. PubMed ID: 31450286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitationally induced biodegradability enhancement of a distillery wastewater.
    Padoley KV; Saharan VK; Mudliar SN; Pandey RA; Pandit AB
    J Hazard Mater; 2012 Jun; 219-220():69-74. PubMed ID: 22502898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.
    Rajoriya S; Bargole S; George S; Saharan VK
    J Hazard Mater; 2018 Feb; 344():1109-1115. PubMed ID: 30216970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent.
    Thanekar P; Gogate PR
    Ultrason Sonochem; 2019 May; 53():202-213. PubMed ID: 30686598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP.
    Agarkoti C; Gogate PR; Pandit AB
    J Environ Manage; 2021 Mar; 281():111792. PubMed ID: 33383477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: A case study for real life greywater treatment.
    Mukherjee A; Mullick A; Teja R; Vadthya P; Roy A; Moulik S
    Ultrason Sonochem; 2020 Sep; 66():105116. PubMed ID: 32252011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate.
    Bis M; Montusiewicz A; Ozonek J; Pasieczna-Patkowska S
    Ultrason Sonochem; 2015 Sep; 26():378-387. PubMed ID: 25771333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L.
    Joshi SM; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():375-381. PubMed ID: 30563793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.
    Gore MM; Saharan VK; Pinjari DV; Chavan PV; Pandit AB
    Ultrason Sonochem; 2014 May; 21(3):1075-82. PubMed ID: 24360991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs.
    Barik AJ; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt A):383-394. PubMed ID: 28946437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes.
    Thanekar P; Panda M; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt A):567-576. PubMed ID: 28946459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ozonation of tannery effluent for removal of cod and color.
    Preethi V; Kalyani KS; Iyappan K; Srinivasakannan C; Balasubramaniam N; Vedaraman N
    J Hazard Mater; 2009 Jul; 166(1):150-4. PubMed ID: 19118944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet air oxidation pretreatment of biomethanated distillery effluent: mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation.
    Sarat Chandra T; Malik SN; Suvidha G; Padmere ML; Shanmugam P; Mudliar SN
    Bioresour Technol; 2014 Apr; 158():135-40. PubMed ID: 24583914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.
    Bagal MV; Gogate PR
    Ultrason Sonochem; 2013 Sep; 20(5):1226-35. PubMed ID: 23538121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)--a case study of Saddiq Leather Works.
    Haydar S; Aziz JA
    J Hazard Mater; 2009 Apr; 163(2-3):1076-83. PubMed ID: 18723279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tannery wastewater treatment by cavitation combined with advanced oxidation process (AOP).
    Korpe S; Bethi B; Sonawane SH; Jayakumar KV
    Ultrason Sonochem; 2019 Dec; 59():104723. PubMed ID: 31421614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents.
    Agarkoti C; Thanekar PD; Gogate PR
    J Environ Manage; 2021 Dec; 300():113786. PubMed ID: 34649311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.
    Lai P; Zhao HZ; Wang C; Ni JR
    J Hazard Mater; 2007 Aug; 147(1-2):232-9. PubMed ID: 17267104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel approaches based on hydrodynamic cavitation for treatment of wastewater containing potassium thiocyanate.
    Jawale RH; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():214-223. PubMed ID: 30528210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.