BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29680876)

  • 1. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction.
    Goto Y; Yanagi I; Matsui K; Yokoi T; Takeda K
    Sci Rep; 2016 Aug; 6():31324. PubMed ID: 27499264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown.
    Cheng P; Zhao C; Pan Q; Xiong Z; Chen Q; Miao X; He Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales.
    Bai J; Wang D; Nam SW; Peng H; Bruce R; Gignac L; Brink M; Kratschmer E; Rossnagel S; Waggoner P; Reuter K; Wang C; Astier Y; Balagurusamy V; Luan B; Kwark Y; Joseph E; Guillorn M; Polonsky S; Royyuru A; Papa Rao S; Stolovitzky G
    Nanoscale; 2014 Aug; 6(15):8900-6. PubMed ID: 24964839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis.
    Zhang Y; Ma D; Gu Z; Zhan L; Sha J
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine.
    Vu T; Borgesi J; Soyring J; D'Alia M; Davidson SL; Shim J
    Nanoscale; 2019 May; 11(21):10536-10545. PubMed ID: 31116213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications.
    Hong J; Oh Y; Choi H; Kim J
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond nanopore sizing: improving solid-state single-molecule sensing performance, lifetime, and analyte scope for omics by targeting surface chemistry during fabrication.
    D Y Bandara YMN; Saharia J; Karawdeniya BI; Hagan JT; Dwyer JR; Kim MJ
    Nanotechnology; 2020 Aug; 31(33):335707. PubMed ID: 32357346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.
    Saharia J; Bandara YMNDY; Karawdeniya BI; Alexandrakis G; Kim MJ
    Electrophoresis; 2021 Apr; 42(7-8):899-909. PubMed ID: 33340118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of DNA Through Solid-state Nanopores Fabricated by Controlled Dielectric Breakdown.
    Fujinami Tanimoto IM; Zhang J; Cressiot B; Le Pioufle B; Bacri L; Pelta J
    Chem Asian J; 2022 Dec; 17(24):e202200888. PubMed ID: 36321866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.
    Bafna JA; Soni GV
    PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown.
    Fried JP; Swett JL; Nadappuram BP; Fedosyuk A; Sousa PM; Briggs DP; Ivanov AP; Edel JB; Mol JA; Yates JR
    Small; 2021 Sep; 17(37):e2102543. PubMed ID: 34337856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state nanopore fabrication by automated controlled breakdown.
    Waugh M; Briggs K; Gunn D; Gibeault M; King S; Ingram Q; Jimenez AM; Berryman S; Lomovtsev D; Andrzejewski L; Tabard-Cossa V
    Nat Protoc; 2020 Jan; 15(1):122-143. PubMed ID: 31836867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slowing down DNA translocation through a nanopore in lithium chloride.
    Kowalczyk SW; Wells DB; Aksimentiev A; Dekker C
    Nano Lett; 2012 Feb; 12(2):1038-44. PubMed ID: 22229707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.