These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29680876)

  • 21. Nanopore Fabrication via Transient High Electric Field Controlled Breakdown and Detection of Single RNA Molecules.
    Yin B; Fang S; Zhou D; Liang L; Wang L; Wang Z; Wang D; Yuan J
    ACS Appl Bio Mater; 2020 Sep; 3(9):6368-6375. PubMed ID: 35021767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh.
    Yan H; Zhou D; Shi B; Zhang Z; Tian H; Yu L; Wang Y; Guan X; Wang Z; Wang D
    Eur Biophys J; 2019 Apr; 48(3):261-266. PubMed ID: 30826854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed detection of DNA translocation in nanopipettes.
    Fraccari RL; Ciccarella P; Bahrami A; Carminati M; Ferrari G; Albrecht T
    Nanoscale; 2016 Apr; 8(14):7604-11. PubMed ID: 26985713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication.
    Tang Z; Dong M; He X; Guan W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13383-13391. PubMed ID: 33705089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translocation frequency of double-stranded DNA through a solid-state nanopore.
    Bell NA; Muthukumar M; Keyser UF
    Phys Rev E; 2016 Feb; 93(2):022401. PubMed ID: 26986356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore.
    Ivica J; Williamson PTF; de Planque MRR
    Anal Chem; 2017 Sep; 89(17):8822-8829. PubMed ID: 28750163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel dielectric breakdown apparatus for solid-state nanopore fabrication with transient high electric field.
    Fang S; Yin B; Xie W; Zhou D; Tang P; He S; Yuan J; Wang D
    Rev Sci Instrum; 2020 Sep; 91(9):093203. PubMed ID: 33003785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution.
    Briggs K; Charron M; Kwok H; Le T; Chahal S; Bustamante J; Waugh M; Tabard-Cossa V
    Nanotechnology; 2015 Feb; 26(8):084004. PubMed ID: 25648336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.
    Pud S; Verschueren D; Vukovic N; Plesa C; Jonsson MP; Dekker C
    Nano Lett; 2015 Oct; 15(10):7112-7. PubMed ID: 26333767
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Fried JP; Swett JL; Nadappuram BP; Mol JA; Edel JB; Ivanov AP; Yates JR
    Chem Soc Rev; 2021 Apr; 50(8):4974-4992. PubMed ID: 33623941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform.
    Pitchford WH; Kim HJ; Ivanov AP; Kim HM; Yu JS; Leatherbarrow RJ; Albrecht T; Kim KB; Edel JB
    ACS Nano; 2015 Feb; 9(2):1740-8. PubMed ID: 25635821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure.
    Wang V; Ermann N; Keyser UF
    Nano Lett; 2019 Aug; 19(8):5661-5666. PubMed ID: 31313927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.
    Goto Y; Matsui K; Yanagi I; Takeda KI
    Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of multiple nanopores in a SiN
    Wang Y; Ying C; Zhou W; de Vreede L; Liu Z; Tian J
    Sci Rep; 2018 Jan; 8(1):1234. PubMed ID: 29352158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
    Karau P; Tabard-Cossa V
    ACS Sens; 2018 Jul; 3(7):1308-1315. PubMed ID: 29874054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.