BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29681471)

  • 21. In situ structure of virus capsids within cell nuclei by correlative light and cryo-electron tomography.
    Vijayakrishnan S; McElwee M; Loney C; Rixon F; Bhella D
    Sci Rep; 2020 Oct; 10(1):17596. PubMed ID: 33077791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eisosomes.
    Moseley JB
    Curr Biol; 2018 Apr; 28(8):R376-R378. PubMed ID: 29689217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring vitreous cryo-section-induced compression at the macromolecular level using electron cryo-tomography; 80S yeast ribosomes appear unaffected.
    Pierson J; Ziese U; Sani M; Peters PJ
    J Struct Biol; 2011 Feb; 173(2):345-9. PubMed ID: 20863895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for eisosomes in maintenance of plasma membrane phosphoinositide levels.
    Fröhlich F; Christiano R; Olson DK; Alcazar-Roman A; DeCamilli P; Walther TC
    Mol Biol Cell; 2014 Sep; 25(18):2797-806. PubMed ID: 25057013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular organization of the human N-BAR domain in shaping the sarcolemma membrane.
    Daum B; Auerswald A; Gruber T; Hause G; Balbach J; Kühlbrandt W; Meister A
    J Struct Biol; 2016 Jun; 194(3):375-82. PubMed ID: 27016283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ studies of membrane biology by cryo-electron tomography.
    Keller J; Fernández-Busnadiego R
    Curr Opin Cell Biol; 2024 Jun; 88():102363. PubMed ID: 38677049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box.
    Pierson J; Fernández JJ; Bos E; Amini S; Gnaegi H; Vos M; Bel B; Adolfsen F; Carrascosa JL; Peters PJ
    J Struct Biol; 2010 Feb; 169(2):219-25. PubMed ID: 19822214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.
    Koning RI; Celler K; Willemse J; Bos E; van Wezel GP; Koster AJ
    Methods Cell Biol; 2014; 124():217-39. PubMed ID: 25287843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The phosphatase Glc7 controls the eisosomal response to starvation via post-translational modification of Pil1.
    Paine KM; Laidlaw KME; Evans GJO; MacDonald C
    J Cell Sci; 2023 Jul; 136(14):. PubMed ID: 37387118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-scale 3D Cryo-Correlative Microscopy for Vitrified Cells.
    Wu GH; Mitchell PG; Galaz-Montoya JG; Hecksel CW; Sontag EM; Gangadharan V; Marshman J; Mankus D; Bisher ME; Lytton-Jean AKR; Frydman J; Czymmek K; Chiu W
    Structure; 2020 Nov; 28(11):1231-1237.e3. PubMed ID: 32814034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vitrification of Tokuyasu-style immuno-labelled sections for correlative cryo light microscopy and cryo electron tomography.
    Bos E; Hussaarts L; van Weering JR; Ellisman MH; de Wit H; Koster AJ
    J Struct Biol; 2014 May; 186(2):273-82. PubMed ID: 24704216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cryo-electron tomography workflow reveals protrusion-mediated shedding on injured plasma membrane.
    Mageswaran SK; Yang WY; Chakrabarty Y; Oikonomou CM; Jensen GJ
    Sci Adv; 2021 Mar; 7(13):. PubMed ID: 33771860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laboratory-based cryogenic soft x-ray tomography with correlative cryo-light and electron microscopy.
    Carlson DB; Gelb J; Palshin V; Evans JE
    Microsc Microanal; 2013 Feb; 19(1):22-9. PubMed ID: 23332214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical, genetic and functional interactions between the eisosome protein Pil1 and the MBOAT O-acyltransferase Gup1.
    Tulha J; Amorim-Rodrigues M; Esquembre LA; Rauch S; Tamás MJ; Lucas C
    FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33355361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eisosomes and plasma membrane organization.
    Olivera-Couto A; Aguilar PS
    Mol Genet Genomics; 2012 Aug; 287(8):607-20. PubMed ID: 22797686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling.
    Fröhlich F; Moreira K; Aguilar PS; Hubner NC; Mann M; Walter P; Walther TC
    J Cell Biol; 2009 Jun; 185(7):1227-42. PubMed ID: 19564405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape.
    Hutchings J; Stancheva V; Miller EA; Zanetti G
    Nat Commun; 2018 Oct; 9(1):4154. PubMed ID: 30297805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steric exclusion and protein conformation determine the localization of plasma membrane transporters.
    Bianchi F; Syga Ł; Moiset G; Spakman D; Schavemaker PE; Punter CM; Seinen AB; van Oijen AM; Robinson A; Poolman B
    Nat Commun; 2018 Feb; 9(1):501. PubMed ID: 29402931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualizing membrane trafficking through the electron microscope: cryo-tomography of coat complexes.
    Markova EA; Zanetti G
    Acta Crystallogr D Struct Biol; 2019 May; 75(Pt 5):467-474. PubMed ID: 31063149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryo-electron tomography: an ideal method to study membrane-associated proteins.
    Dunstone MA; de Marco A
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.