These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29681525)

  • 1. Site-Specific Three-Color Labeling of α-Synuclein via Conjugation to Uniquely Reactive Cysteines during Assembly by Native Chemical Ligation.
    Lee TC; Moran CR; Cistrone PA; Dawson PE; Deniz AA
    Cell Chem Biol; 2018 Jun; 25(6):797-801.e4. PubMed ID: 29681525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient single-molecule fluorescence resonance energy transfer analysis by site-specific dual-labeling of protein using an unnatural amino acid.
    Seo MH; Lee TS; Kim E; Cho YL; Park HS; Yoon TY; Kim HS
    Anal Chem; 2011 Dec; 83(23):8849-54. PubMed ID: 22035235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule FRET Detection of Early-Stage Conformations in α-Synuclein Aggregation.
    Moosa MM; Ferreon JC; Ferreon ACM
    Methods Mol Biol; 2019; 1948():221-233. PubMed ID: 30771181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.
    Portal CF; Seifert JM; Buehler C; Meisner-Kober NC; Auer M
    Bioconjug Chem; 2014 Jul; 25(7):1213-22. PubMed ID: 24866260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein.
    Roberti MJ; Bertoncini CW; Klement R; Jares-Erijman EA; Jovin TM
    Nat Methods; 2007 Apr; 4(4):345-51. PubMed ID: 17351621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric Single-Molecule FRET Measurements to Probe Conformational Subpopulations of Intrinsically Disordered Proteins.
    Nasir I; Bentley EP; Deniz AA
    Curr Protoc Chem Biol; 2020 Mar; 12(1):e80. PubMed ID: 32159932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-fluoro-D,L-tryptophan as a dual NMR and fluorescent probe of α-synuclein.
    Pfefferkorn CM; Lee JC
    Methods Mol Biol; 2012; 895():197-209. PubMed ID: 22760321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble FRET methods in studies of intrinsically disordered proteins.
    Haas E
    Methods Mol Biol; 2012; 895():467-98. PubMed ID: 22760335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Detection of Early Events of α-Synuclein Aggregation Using a Cysteine Specific Hybrid Scaffold.
    Chatterjee S; Ghosh S; Mishra S; Das Saha K; Banerji B; Chattopadhyay K
    Biochemistry; 2019 Feb; 58(8):1109-1119. PubMed ID: 30694039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein interactions as a tool for site-specific labeling of proteins.
    Jäger M; Michalet X; Weiss S
    Protein Sci; 2005 Aug; 14(8):2059-68. PubMed ID: 15987886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulations of the fluctuating conformational dynamics of intrinsically disordered proteins.
    Smith WW; Schreck CF; Hashem N; Soltani S; Nath A; Rhoades E; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041910. PubMed ID: 23214618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities.
    Lemke EA
    Methods Mol Biol; 2011; 751():3-15. PubMed ID: 21674321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation.
    Yushchenko DA; Fauerbach JA; Thirunavukkuarasu S; Jares-Erijman EA; Jovin TM
    J Am Chem Soc; 2010 Jun; 132(23):7860-1. PubMed ID: 20491471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence lifetime measurements of intrinsically unstructured proteins: application to α-synuclein.
    Schreurs S; Kluba M; Meuvis J; Engelborghs Y
    Methods Mol Biol; 2012; 895():461-6. PubMed ID: 22760334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of an intramolecular three-color fluorescence resonance energy transfer probe by site-specific protein labeling.
    Voss S; Zhao L; Chen X; Gerhard F; Wu YW
    J Pept Sci; 2014 Feb; 20(2):115-20. PubMed ID: 24395760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy.
    Zosel F; Holla A; Schuler B
    Methods Mol Biol; 2022; 2376():207-233. PubMed ID: 34845612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-targeted labeling of proteins using cysteine and selenomethionine residues.
    Lang S; Spratt DE; Guillemette JG; Palmer M
    Anal Biochem; 2005 Jul; 342(2):271-9. PubMed ID: 15950913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different Conformational Subensembles of the Intrinsically Disordered Protein α-Synuclein in Cells.
    Fakhree MAA; Nolten IS; Blum C; Claessens MMAE
    J Phys Chem Lett; 2018 Mar; 9(6):1249-1253. PubMed ID: 29474083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.