These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 29681996)
1. Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia. Shafique S; Tehsin S Comput Math Methods Med; 2018; 2018():6125289. PubMed ID: 29681996 [TBL] [Abstract][Full Text] [Related]
2. GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Das BK; Dutta HS Med Biol Eng Comput; 2020 Nov; 58(11):2789-2803. PubMed ID: 32929660 [TBL] [Abstract][Full Text] [Related]
3. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Acharya V; Kumar P Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595 [TBL] [Abstract][Full Text] [Related]
4. Nucleus and cytoplasm-based segmentation and actor-critic neural network for acute lymphocytic leukaemia detection in single cell blood smear images. Jha KK; Dutta HS Med Biol Eng Comput; 2020 Jan; 58(1):171-186. PubMed ID: 31811554 [TBL] [Abstract][Full Text] [Related]
5. Classification of acute lymphoblastic leukemia using deep learning. Rehman A; Abbas N; Saba T; Rahman SIU; Mehmood Z; Kolivand H Microsc Res Tech; 2018 Nov; 81(11):1310-1317. PubMed ID: 30351463 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey. Wani IM; Arora S Med Biol Eng Comput; 2020 Sep; 58(9):1873-1917. PubMed ID: 32583141 [TBL] [Abstract][Full Text] [Related]
7. A computer-aided method to expedite the evaluation of prognosis for childhood acute lymphoblastic leukemia. Wang X; Li S; Liu H; Mulvihill JJ; Chen W; Zheng B Technol Cancer Res Treat; 2006 Aug; 5(4):429-36. PubMed ID: 16866573 [TBL] [Abstract][Full Text] [Related]
8. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Acharya UR; Vinitha Sree S; Krishnan MM; Molinari F; Garberoglio R; Suri JS Ultrasonics; 2012 Apr; 52(4):508-20. PubMed ID: 22154208 [TBL] [Abstract][Full Text] [Related]
9. Optimizing the classification of acute lymphoblastic leukemia and acute myeloid leukemia samples using artificial neural networks. Zong N; Adjouadi M; Ayala M Biomed Sci Instrum; 2006; 42():261-6. PubMed ID: 16817618 [TBL] [Abstract][Full Text] [Related]
10. Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques. Abunadi I; Senan EM Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214531 [TBL] [Abstract][Full Text] [Related]
11. A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction. Anwar S; Alam A Med Biol Eng Comput; 2020 Dec; 58(12):3113-3121. PubMed ID: 33159270 [TBL] [Abstract][Full Text] [Related]
12. Automatic classification of acute lymphoblastic leukemia cells and lymphocyte subtypes based on a novel convolutional neural network. MoradiAmin M; Yousefpour M; Samadzadehaghdam N; Ghahari L; Ghorbani M; Mafi M Microsc Res Tech; 2024 Jul; 87(7):1615-1626. PubMed ID: 38445461 [TBL] [Abstract][Full Text] [Related]
13. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images. Moshavash Z; Danyali H; Helfroush MS J Digit Imaging; 2018 Oct; 31(5):702-717. PubMed ID: 29654425 [TBL] [Abstract][Full Text] [Related]
14. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Shafique S; Tehsin S Technol Cancer Res Treat; 2018 Jan; 17():1533033818802789. PubMed ID: 30261827 [TBL] [Abstract][Full Text] [Related]
15. Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis. MoradiAmin M; Memari A; Samadzadehaghdam N; Kermani S; Talebi A Microsc Res Tech; 2016 Oct; 79(10):908-916. PubMed ID: 27406956 [TBL] [Abstract][Full Text] [Related]
16. An attention-based deep learning for acute lymphoblastic leukemia classification. Jawahar M; Anbarasi LJ; Narayanan S; Gandomi AH Sci Rep; 2024 Jul; 14(1):17447. PubMed ID: 39075091 [TBL] [Abstract][Full Text] [Related]
17. Wavelet transform fuzzy algorithms for dermoscopic image segmentation. Castillejos H; Ponomaryov V; Nino-de-Rivera L; Golikov V Comput Math Methods Med; 2012; 2012():578721. PubMed ID: 22567042 [TBL] [Abstract][Full Text] [Related]
18. IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning. Bibi N; Sikandar M; Ud Din I; Almogren A; Ali S J Healthc Eng; 2020; 2020():6648574. PubMed ID: 33343851 [TBL] [Abstract][Full Text] [Related]
20. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis. Mahersia H; Boulehmi H; Hamrouni K Comput Methods Programs Biomed; 2016 Apr; 126():46-62. PubMed ID: 26831269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]