BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29682607)

  • 1. The Role of HSP40 Conserved Motifs in the Response to Cytotoxic Stress.
    Sojourner SJ; Graham WM; Whitmore AM; Miles JS; Freeny D; Flores-Rozas H
    J Nat Sci; 2018; 4(4):. PubMed ID: 29682607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40.
    Wu Y; Li J; Jin Z; Fu Z; Sha B
    J Mol Biol; 2005 Mar; 346(4):1005-11. PubMed ID: 15701512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58(IPK) does not require J domain function.
    Yan W; Gale MJ; Tan SL; Katze MG
    Biochemistry; 2002 Apr; 41(15):4938-45. PubMed ID: 11939789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast.
    Dey B; Caplan AJ; Boschelli F
    Mol Biol Cell; 1996 Jan; 7(1):91-100. PubMed ID: 8741842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins.
    Flom GA; Lemieszek M; Fortunato EA; Johnson JL
    Mol Biol Cell; 2008 Dec; 19(12):5249-58. PubMed ID: 18829866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.
    Yu HY; Ziegelhoffer T; Osipiuk J; Ciesielski SJ; Baranowski M; Zhou M; Joachimiak A; Craig EA
    J Mol Biol; 2015 Apr; 427(7):1632-43. PubMed ID: 25687964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity.
    Sluder IT; Nitika ; Knighton LE; Truman AW
    PLoS Genet; 2018 Nov; 14(11):e1007462. PubMed ID: 30452489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40.
    Edkins AL; Ludewig MH; Blatch GL
    Int J Biochem Cell Biol; 2004 Aug; 36(8):1585-98. PubMed ID: 15147737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ.
    Goffin L; Georgopoulos C
    Mol Microbiol; 1998 Oct; 30(2):329-40. PubMed ID: 9791178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate.
    Li J; Qian X; Sha B
    Structure; 2003 Dec; 11(12):1475-83. PubMed ID: 14656432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Role of Human DNAJAs in the Response to Cytotoxic Chemotherapeutic Agents in a Yeast Model System.
    Whitmore A; Freeny D; Sojourner SJ; Miles JS; Graham WM; Flores-Rozas H
    Biomed Res Int; 2020; 2020():9097638. PubMed ID: 32149145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40.
    Li J; Sha B
    Biochem J; 2005 Mar; 386(Pt 3):453-60. PubMed ID: 15500443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function.
    Hennessy F; Boshoff A; Blatch GL
    Int J Biochem Cell Biol; 2005 Jan; 37(1):177-91. PubMed ID: 15381160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function.
    Fan CY; Lee S; Ren HY; Cyr DM
    Mol Biol Cell; 2004 Feb; 15(2):761-73. PubMed ID: 14657253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the cytosolic DnaJ homologue, YDJ1, delay and compromise the efficient translation of heterologous proteins in yeast.
    Brodsky JL; Lawrence JG; Caplan AJ
    Biochemistry; 1998 Dec; 37(51):18045-55. PubMed ID: 9922173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of 70-kDa heat-shock-protein ATPase activity and substrate binding by human DnaJ-like proteins, HSJ1a and HSJ1b.
    Cheetham ME; Jackson AP; Anderton BH
    Eur J Biochem; 1994 Nov; 226(1):99-107. PubMed ID: 7957263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism.
    Caplan AJ; Cyr DM; Douglas MG
    Cell; 1992 Dec; 71(7):1143-55. PubMed ID: 1473150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3].
    Xue YL; Wang H; Riedy M; Roberts BL; Sun Y; Song YB; Jones GW; Masison DC; Song Y
    J Biomol Struct Dyn; 2018 May; 36(7):1764-1775. PubMed ID: 28766406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution NMR investigation on the structure and function of the isolated J-domain from Sis1: Evidence of transient inter-domain interactions in the full-length protein.
    Pinheiro GMS; Amorim GC; Iqbal A; Almeida FCL; Ramos CHI
    Arch Biochem Biophys; 2019 Jul; 669():71-79. PubMed ID: 31141701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.