BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29682866)

  • 1. Metapopulation dynamics in a changing climate: Increasing spatial synchrony in weather conditions drives metapopulation synchrony of a butterfly inhabiting a fragmented landscape.
    Kahilainen A; van Nouhuys S; Schulz T; Saastamoinen M
    Glob Chang Biol; 2018 Sep; 24(9):4316-4329. PubMed ID: 29682866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly.
    Tack AJ; Mononen T; Hanski I
    Proc Biol Sci; 2015 May; 282(1806):20150173. PubMed ID: 25854888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends.
    Ojanen SP; Nieminen M; Meyke E; Pöyry J; Hanski I
    Ecol Evol; 2013 Oct; 3(11):3713-37. PubMed ID: 24198935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersal-related life-history trade-offs in a butterfly metapopulation.
    Hanski I; Saastamoinen M; Ovaskainen O
    J Anim Ecol; 2006 Jan; 75(1):91-100. PubMed ID: 16903046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling up the effects of inbreeding depression from individuals to metapopulations.
    Nonaka E; Sirén J; Somervuo P; Ruokolainen L; Ovaskainen O; Hanski I
    J Anim Ecol; 2019 Aug; 88(8):1202-1214. PubMed ID: 31077598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-plant availability drives the spatiotemporal dynamics of interacting metapopulations across a fragmented landscape.
    Opedal ØH; Ovaskainen O; Saastamoinen M; Laine AL; van Nouhuys S
    Ecology; 2020 Dec; 101(12):e03186. PubMed ID: 32892363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics.
    Couchoux C; Seppä P; van Nouhuys S
    Mol Ecol; 2016 Jul; 25(14):3344-55. PubMed ID: 27159020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics.
    Saastamoinen M; Ikonen S; Wong SC; Lehtonen R; Hanski I
    J Anim Ecol; 2013 May; 82(3):529-39. PubMed ID: 23347450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation.
    van Bergen E; Dallas T; DiLeo MF; Kahilainen A; Mattila ALK; Luoto M; Saastamoinen M
    Conserv Biol; 2020 Dec; 34(6):1503-1511. PubMed ID: 32298001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From individual behavior to metapopulation dynamics: unifying the patchy population and classic metapopulation models.
    Ovaskainen O; Hanski I
    Am Nat; 2004 Sep; 164(3):364-77. PubMed ID: 15478091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation.
    DiLeo MF; Nonaka E; Husby A; Saastamoinen M
    Proc Biol Sci; 2022 Jun; 289(1976):20220322. PubMed ID: 35673865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes.
    Hanski I; Schulz T; Wong SC; Ahola V; Ruokolainen A; Ojanen SP
    Nat Commun; 2017 Feb; 8():14504. PubMed ID: 28211463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metapopulation-level adaptation of insect host plant preference and extinction-colonization dynamics in heterogeneous landscapes.
    Hanski I; Heino M
    Theor Popul Biol; 2003 Nov; 64(3):281-90. PubMed ID: 14522169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metapopulation genetic structure of two coexisting parasitoids of the Glanville fritillary butterfly.
    Kankare M; van Nouhuys S; Gaggiotti O; Hanski I
    Oecologia; 2005 Mar; 143(1):77-84. PubMed ID: 15586293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weather explains high annual variation in butterfly dispersal.
    Kuussaari M; Rytteri S; Heikkinen RK; Heliölä J; von Bagh P
    Proc Biol Sci; 2016 Jul; 283(1835):. PubMed ID: 27440662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative developmental and transcriptomic responses to host plant water limitation in a butterfly metapopulation.
    Kahilainen A; Oostra V; Somervuo P; Minard G; Saastamoinen M
    Mol Ecol; 2022 Nov; 31(22):5666-5683. PubMed ID: 34516691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary butterfly.
    Fountain T; Nieminen M; Sirén J; Wong SC; Lehtonen R; Hanski I
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2678-83. PubMed ID: 26903642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal genetic structure at the fourth trophic level in a fragmented landscape.
    Nair A; Fountain T; Ikonen S; Ojanen SP; van Nouhuys S
    Proc Biol Sci; 2016 May; 283(1831):. PubMed ID: 27226470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population synchrony indicates functional connectivity in a threatened sedentary butterfly.
    Blomfield A; Menéndez R; Wilby A
    Oecologia; 2023 Apr; 201(4):979-989. PubMed ID: 36976354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.