BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29682955)

  • 1. Ultra-Broadband Directional Scattering by Colloidally Lithographed High-Index Mie Resonant Oligomers and Their Energy-Harvesting Applications.
    Zhang Y; Xu Y; Chen S; Lu H; Chen K; Cao Y; Miroshnichenko AE; Gu M; Li X
    ACS Appl Mater Interfaces; 2018 May; 10(19):16776-16782. PubMed ID: 29682955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators.
    Spinelli P; Verschuuren MA; Polman A
    Nat Commun; 2012 Feb; 3():692. PubMed ID: 22353722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale fabrication of an ultrathin broadband absorber using quasi-random dielectric Mie resonators.
    Guo X; Ren YX; Li L; Wang Z; Wang S; Gao M; Wang Z; Wong KKY
    Opt Express; 2023 Jan; 31(2):2523-2537. PubMed ID: 36785264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband and Highly Directional Visible Light Scattering by Laser-Splashed Lossless TiO
    Zhang Y; Chen S; Han J
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Resonant Mie Resonator Arrays for Broadband Light Trapping in Ultrathin c-Si Solar Cells.
    Lee N; Xue M; Hong J; van de Groep J; Brongersma ML
    Adv Mater; 2023 Jul; 35(29):e2210941. PubMed ID: 37129216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics.
    Zhong S; Zeng Y; Huang Z; Shen W
    Sci Rep; 2015 Mar; 5():8915. PubMed ID: 25746848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Forward Light Scattering by Architectural Design of Core-Shell Silicon Particles.
    De Marco ML; Jiang T; Fang J; Lacomme S; Zheng Y; Baron A; Korgel BA; Barois P; Drisko GL; Aymonier C
    Adv Funct Mater; 2021 Jun; 31(26):. PubMed ID: 38031546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting.
    Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB
    Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing dielectric resonators on substrates: combining magnetic and electric resonances.
    van de Groep J; Polman A
    Opt Express; 2013 Nov; 21(22):26285-302. PubMed ID: 24216852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Dot Emission Driven by Mie Resonances in Silicon Nanostructures.
    Rutckaia V; Heyroth F; Novikov A; Shaleev M; Petrov M; Schilling J
    Nano Lett; 2017 Nov; 17(11):6886-6892. PubMed ID: 28968505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays.
    Wang ZY; Zhang RJ; Wang SY; Lu M; Chen X; Zheng YX; Chen LY; Ye Z; Wang CZ; Ho KM
    Sci Rep; 2015 Jan; 5():7810. PubMed ID: 25589290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas.
    Shibanuma T; Albella P; Maier SA
    Nanoscale; 2016 Aug; 8(29):14184-92. PubMed ID: 27389310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.
    Staude I; Miroshnichenko AE; Decker M; Fofang NT; Liu S; Gonzales E; Dominguez J; Luk TS; Neshev DN; Brener I; Kivshar Y
    ACS Nano; 2013 Sep; 7(9):7824-32. PubMed ID: 23952969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embossed Mie resonator arrays composed of compacted TiO
    Visser D; Chen DY; Désières Y; Ravishankar AP; Anand S
    Sci Rep; 2020 Jul; 10(1):12527. PubMed ID: 32719504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells.
    Fahim NF; Jia B; Shi Z; Gu M
    Opt Express; 2012 Sep; 20 Suppl 5():A694-705. PubMed ID: 23037536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale and Low-Cost Fabrication of Silicon Mie Resonators.
    Chaâbani W; Proust J; Movsesyan A; Béal J; Baudrion AL; Adam PM; Chehaidar A; Plain J
    ACS Nano; 2019 Apr; 13(4):4199-4208. PubMed ID: 30883108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.
    Yang Z; Gao P; Zhang C; Li X; Ye J
    Sci Rep; 2016 Jul; 6():30503. PubMed ID: 27455911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths.
    Labelle AJ; Bonifazi M; Tian Y; Wong C; Hoogland S; Favraud G; Walters G; Sutherland B; Liu M; Li J; Zhang X; Kelley SO; Sargent EH; Fratalocchi A
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5556-5565. PubMed ID: 28156089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.