These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

750 related articles for article (PubMed ID: 29683383)

  • 1. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility.
    Kulkarni JA; Cullis PR; van der Meel R
    Nucleic Acid Ther; 2018 Jun; 28(3):146-157. PubMed ID: 29683383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid Nanoparticle Systems for Enabling Gene Therapies.
    Cullis PR; Hope MJ
    Mol Ther; 2017 Jul; 25(7):1467-1475. PubMed ID: 28412170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid nanoparticles for short interfering RNA delivery.
    Leung AK; Tam YY; Cullis PR
    Adv Genet; 2014; 88():71-110. PubMed ID: 25409604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery.
    Sun D; Lu ZR
    Pharm Res; 2023 Jan; 40(1):27-46. PubMed ID: 36600047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.
    Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR
    J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA.
    Kulkarni JA; Darjuan MM; Mercer JE; Chen S; van der Meel R; Thewalt JL; Tam YYC; Cullis PR
    ACS Nano; 2018 May; 12(5):4787-4795. PubMed ID: 29614232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular Design of pH-Sensitive Cationic Lipids.
    Sato Y
    Chem Pharm Bull (Tokyo); 2021; 69(12):1141-1159. PubMed ID: 34853281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leading RNA Interference Therapeutics Part 1: Silencing Hereditary Transthyretin Amyloidosis, with a Focus on Patisiran.
    Titze-de-Almeida SS; Brandão PRP; Faber I; Titze-de-Almeida R
    Mol Diagn Ther; 2020 Feb; 24(1):49-59. PubMed ID: 31701435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-Generation Lipids in RNA Interference Therapeutics.
    Rietwyk S; Peer D
    ACS Nano; 2017 Aug; 11(8):7572-7586. PubMed ID: 28727419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficiency of lipid nanoparticles with an original cationic lipid as a siRNA delivery system for macrophages and dendritic cells.
    Uemura Y; Naoi T; Kanai Y; Kobayashi K
    Pharm Dev Technol; 2019 Mar; 24(3):263-268. PubMed ID: 29688101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.
    Qiu M; Li Y; Bloomer H; Xu Q
    Acc Chem Res; 2021 Nov; 54(21):4001-4011. PubMed ID: 34668716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of helper lipids in lipid nanoparticle formulations of siRNA.
    Kulkarni JA; Witzigmann D; Leung J; Tam YYC; Cullis PR
    Nanoscale; 2019 Nov; 11(45):21733-21739. PubMed ID: 31713568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of siRNA Therapeutics for the Treatment of Liver Diseases.
    Holm A; Løvendorf MB; Kauppinen S
    Methods Mol Biol; 2021; 2282():57-75. PubMed ID: 33928570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration.
    Chen S; Tam YY; Lin PJ; Leung AK; Tam YK; Cullis PR
    J Control Release; 2014 Dec; 196():106-12. PubMed ID: 25285610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pieter Cullis' quest for a lipid-based, fusogenic delivery system for nucleic acid therapeutics: success with siRNA so what about mRNA?
    Tam YK; Madden TD; Hope MJ
    J Drug Target; 2016 Nov; 24(9):774-779. PubMed ID: 27588674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid nanoparticle delivery systems for siRNA-based therapeutics.
    Wan C; Allen TM; Cullis PR
    Drug Deliv Transl Res; 2014 Feb; 4(1):74-83. PubMed ID: 25786618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis.
    Butler JS; Chan A; Costelha S; Fishman S; Willoughby JL; Borland TD; Milstein S; Foster DJ; Gonçalves P; Chen Q; Qin J; Bettencourt BR; Sah DW; Alvarez R; Rajeev KG; Manoharan M; Fitzgerald K; Meyers RE; Nochur SV; Saraiva MJ; Zimmermann TS
    Amyloid; 2016 Jun; 23(2):109-18. PubMed ID: 27033334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads.
    Kulkarni JA; Witzigmann D; Leung J; van der Meel R; Zaifman J; Darjuan MM; Grisch-Chan HM; Thöny B; Tam YYC; Cullis PR
    Nanoscale; 2019 May; 11(18):9023-9031. PubMed ID: 31021343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid nanoparticle technology for therapeutic gene regulation in the liver.
    Witzigmann D; Kulkarni JA; Leung J; Chen S; Cullis PR; van der Meel R
    Adv Drug Deliv Rev; 2020; 159():344-363. PubMed ID: 32622021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.