These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29683449)

  • 1. Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells.
    Serfling R; Seidel L; Böttke T; Coin I
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells.
    Meineke B; Heimgärtner J; Eirich J; Landreh M; Elsässer SJ
    Cell Rep; 2020 Jun; 31(12):107811. PubMed ID: 32579937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
    Meineke B; Heimgärtner J; Caridha R; Block MF; Kimler KJ; Pires MF; Landreh M; Elsässer SJ
    Cell Rep Methods; 2023 Nov; 3(11):100626. PubMed ID: 37935196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells.
    Serfling R; Lorenz C; Etzel M; Schicht G; Böttke T; Mörl M; Coin I
    Nucleic Acids Res; 2018 Jan; 46(1):1-10. PubMed ID: 29177436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of aminoacyl-tRNA synthetases through
    Furuhata Y; Rix G; Van Deventer JA; Liu CC
    bioRxiv; 2024 Sep; ():. PubMed ID: 39386665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncanonical amino acids in the interrogation of cellular protein synthesis.
    Ngo JT; Tirrell DA
    Acc Chem Res; 2011 Sep; 44(9):677-85. PubMed ID: 21815659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Evolution Pipeline for the Improvement of Orthogonal Translation Machinery for Genetic Code Expansion at Sense Codons.
    Biddle W; Schwark DG; Schmitt MA; Fisk JD
    Front Chem; 2022; 10():815788. PubMed ID: 35252113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of orthogonal aminoacyl-tRNA synthetase mutant for incorporating a non-canonical amino acid.
    Lee D; Kim JG; Kim TW; Choi JI
    AMB Express; 2024 May; 14(1):60. PubMed ID: 38782816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites.
    Italia JS; Addy PS; Erickson SB; Peeler JC; Weerapana E; Chatterjee A
    J Am Chem Soc; 2019 Apr; 141(15):6204-6212. PubMed ID: 30909694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of permissive amber suppression sites for efficient non-canonical amino acid incorporation in mammalian cells.
    Bartoschek MD; Ugur E; Nguyen TA; Rodschinka G; Wierer M; Lang K; Bultmann S
    Nucleic Acids Res; 2021 Jun; 49(11):e62. PubMed ID: 33684219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the current scope and limitations of dual noncanonical amino acid mutagenesis in mammalian cells.
    Zheng Y; Addy PS; Mukherjee R; Chatterjee A
    Chem Sci; 2017 Oct; 8(10):7211-7217. PubMed ID: 29081953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase.
    Beyer JN; Hosseinzadeh P; Gottfried-Lee I; Van Fossen EM; Zhu P; Bednar RM; Karplus PA; Mehl RA; Cooley RB
    J Mol Biol; 2020 Jul; 432(16):4690-4704. PubMed ID: 32569745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids.
    Schmidt MJ; Summerer D
    Methods Mol Biol; 2018; 1728():97-111. PubMed ID: 29404992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live Cell Imaging of Bioorthogonally Labelled Proteins Generated With a Single Pyrrolysine tRNA Gene.
    Aloush N; Schvartz T; König AI; Cohen S; Brozgol E; Tam B; Nachmias D; Ben-David O; Garini Y; Elia N; Arbely E
    Sci Rep; 2018 Sep; 8(1):14527. PubMed ID: 30267004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNA
    Englert M; Vargas-Rodriguez O; Reynolds NM; Wang YS; Söll D; Umehara T
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3009-3015. PubMed ID: 28288813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolved pyrrolysyl-tRNA synthetase with polysubstrate specificity expands the toolbox for engineering enzymes with incorporation of noncanonical amino acids.
    Liu K; Jiang L; Ma S; Song Z; Wang L; Zhang Q; Xu R; Yang L; Wu J; Yu H
    Bioresour Bioprocess; 2023 Dec; 10(1):92. PubMed ID: 38647798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the Scope of Single- and Double-Noncanonical Amino Acid Mutagenesis in Mammalian Cells Using Orthogonal Polyspecific Leucyl-tRNA Synthetases.
    Zheng Y; Mukherjee R; Chin MA; Igo P; Gilgenast MJ; Chatterjee A
    Biochemistry; 2018 Jan; 57(4):441-445. PubMed ID: 29106828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.