These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29683449)

  • 41. Streptomyces albus: A New Cell Factory for Non-Canonical Amino Acids Incorporation into Ribosomally Synthesized Natural Products.
    Lopatniuk M; Myronovskyi M; Luzhetskyy A
    ACS Chem Biol; 2017 Sep; 12(9):2362-2370. PubMed ID: 28758722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expanding the Genetic Code of
    Bartholomae M; Baumann T; Nickling JH; Peterhoff D; Wagner R; Budisa N; Kuipers OP
    Front Microbiol; 2018; 9():657. PubMed ID: 29681891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unnatural amino acid mutagenesis of GPCRs using amber codon suppression and bioorthogonal labeling.
    Huber T; Naganathan S; Tian H; Ye S; Sakmar TP
    Methods Enzymol; 2013; 520():281-305. PubMed ID: 23332705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Site-specific in vitro and in vivo incorporation of molecular probes to study G-protein-coupled receptors.
    Daggett KA; Sakmar TP
    Curr Opin Chem Biol; 2011 Jun; 15(3):392-8. PubMed ID: 21571577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amber Suppression Technology for Mapping Site-specific Viral-host Protein Interactions in Mammalian Cells.
    Isa NF; Bensaude O; Murphy S
    Bio Protoc; 2022 Feb; 12(3):e4315. PubMed ID: 35284605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient Phage Display with Multiple Distinct Non-Canonical Amino Acids Using Orthogonal Ribosome-Mediated Genetic Code Expansion.
    Oller-Salvia B; Chin JW
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10844-10848. PubMed ID: 31157495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incorporation of Modified Amino Acids by Engineered Elongation Factors with Expanded Substrate Capabilities.
    DeLey Cox VE; Cole MF; Gaucher EA
    ACS Synth Biol; 2019 Feb; 8(2):287-296. PubMed ID: 30609889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.
    Gan R; Perez JG; Carlson ED; Ntai I; Isaacs FJ; Kelleher NL; Jewett MC
    Biotechnol Bioeng; 2017 May; 114(5):1074-1086. PubMed ID: 27987323
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative Single-Residue Bioorthogonal Labeling of G Protein-Coupled Receptors in Live Cells.
    Serfling R; Seidel L; Bock A; Lohse MJ; Annibale P; Coin I
    ACS Chem Biol; 2019 Jun; 14(6):1141-1149. PubMed ID: 31074969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The central role of tRNA in genetic code expansion.
    Reynolds NM; Vargas-Rodriguez O; Söll D; Crnković A
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3001-3008. PubMed ID: 28323071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing logical codon reassignment - Expanding the chemistry in biology.
    Dumas A; Lercher L; Spicer CD; Davis BG
    Chem Sci; 2015 Jan; 6(1):50-69. PubMed ID: 28553457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells.
    Serfling R; Coin I
    Methods Enzymol; 2016; 580():89-107. PubMed ID: 27586329
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An intact amber-free HIV-1 system for in-virus protein bioorthogonal click labeling that delineates envelope conformational dynamics.
    Ao Y; Grover JR; Han Y; Zhong G; Qin W; Ghimire D; Haque A; Bhattacharjee R; Zhang B; Arthos J; Lemke EA; Kwong PD; Lu M
    bioRxiv; 2023 Mar; ():. PubMed ID: 36909529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
    Rauch BJ; Porter JJ; Mehl RA; Perona JJ
    Biochemistry; 2016 Jan; 55(3):618-28. PubMed ID: 26694948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
    Fan C; Xiong H; Reynolds NM; Söll D
    Nucleic Acids Res; 2015 Dec; 43(22):e156. PubMed ID: 26250114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell-Free Protein Synthesis for Multiple Site-Specific Incorporation of Noncanonical Amino Acids Using Cell Extracts from RF-1 Deletion E. coli Strains.
    Seki E; Yanagisawa T; Yokoyama S
    Methods Mol Biol; 2018; 1728():49-65. PubMed ID: 29404990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.
    Peng T; Hang HC
    J Am Chem Soc; 2016 Nov; 138(43):14423-14433. PubMed ID: 27768298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent developments of engineered translational machineries for the incorporation of non-canonical amino acids into polypeptides.
    Terasaka N; Iwane Y; Geiermann AS; Goto Y; Suga H
    Int J Mol Sci; 2015 Mar; 16(3):6513-31. PubMed ID: 25803109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.