These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 29683473)
1. Toxicity of the spiny thick-foot Pachypodium. Agrawal AA; Ali A; Daisy Johnson M; Hastings AP; Burge D; Weber MG Am J Bot; 2018 Apr; 105(4):677-686. PubMed ID: 29683473 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species. Züst T; Petschenka G; Hastings AP; Agrawal AA J Chem Ecol; 2019 Jan; 45(1):50-60. PubMed ID: 30523520 [TBL] [Abstract][Full Text] [Related]
3. Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny. Jones PL; Petschenka G; Flacht L; Agrawal AA J Chem Ecol; 2019 Mar; 45(3):264-277. PubMed ID: 30793231 [TBL] [Abstract][Full Text] [Related]
4. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Agrawal AA; Böröczky K; Haribal M; Hastings AP; White RA; Jiang RW; Duplais C Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850021 [TBL] [Abstract][Full Text] [Related]
5. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+ -ATPase of milkweed butterflies (lepidoptera: Danaini). Petschenka G; Fandrich S; Sander N; Wagschal V; Boppré M; Dobler S Evolution; 2013 Sep; 67(9):2753-61. PubMed ID: 24033181 [TBL] [Abstract][Full Text] [Related]
6. Testing the selective sequestration hypothesis: Monarch butterflies preferentially sequester plant defences that are less toxic to themselves while maintaining potency to others. Agrawal AA; Hastings AP; Duplais C Ecol Lett; 2024 Jan; 27(1):e14340. PubMed ID: 38017619 [TBL] [Abstract][Full Text] [Related]
7. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Petschenka G; Agrawal AA Proc Biol Sci; 2015 Nov; 282(1818):20151865. PubMed ID: 26538594 [TBL] [Abstract][Full Text] [Related]
8. The Effects of Milkweed Induced Defense on Parasite Resistance in Monarch Butterflies, Danaus plexippus. Tan WH; Tao L; Hoang KM; Hunter MD; de Roode JC J Chem Ecol; 2018 Nov; 44(11):1040-1044. PubMed ID: 30123937 [TBL] [Abstract][Full Text] [Related]
9. Physiological screening for target site insensitivity and localization of Na(+)/K(+)-ATPase in cardenolide-adapted Lepidoptera. Petschenka G; Offe JK; Dobler S J Insect Physiol; 2012 May; 58(5):607-12. PubMed ID: 22343317 [TBL] [Abstract][Full Text] [Related]
10. Convergent evolution of cardiac-glycoside resistance in predators and parasites of milkweed herbivores. Groen SC; Whiteman NK Curr Biol; 2021 Nov; 31(22):R1465-R1466. PubMed ID: 34813747 [TBL] [Abstract][Full Text] [Related]
11. Compound-Specific Behavioral and Enzymatic Resistance to Toxic Milkweed Cardenolides in a Generalist Bumblebee Pollinator. Jones PL; Martin KR; Prachand SV; Hastings AP; Duplais C; Agrawal AA J Chem Ecol; 2023 Aug; 49(7-8):418-427. PubMed ID: 36745328 [TBL] [Abstract][Full Text] [Related]
12. Quantification of plant cardenolides by HPLC, measurement of Na Petschenka G; Züst T; Hastings AP; Agrawal AA; Jander G Methods Enzymol; 2023; 680():275-302. PubMed ID: 36710014 [TBL] [Abstract][Full Text] [Related]
13. Trade-offs constrain the evolution of an inducible defense within but not between plant species. Agrawal AA; Hastings AP Ecology; 2019 Dec; 100(12):e02857. PubMed ID: 31365759 [TBL] [Abstract][Full Text] [Related]
15. Relative Selectivity of Plant Cardenolides for Na Petschenka G; Fei CS; Araya JJ; Schröder S; Timmermann BN; Agrawal AA Front Plant Sci; 2018; 9():1424. PubMed ID: 30323822 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomics of monarch butterflies (Danaus plexippus) reveals that toxic host plants alter expression of detoxification genes and down-regulate a small number of immune genes. Tan WH; Acevedo T; Harris EV; Alcaide TY; Walters JR; Hunter MD; Gerardo NM; de Roode JC Mol Ecol; 2019 Nov; 28(22):4845-4863. PubMed ID: 31483077 [TBL] [Abstract][Full Text] [Related]
17. Spatial metabolomics reveal divergent cardenolide processing in the monarch (Danaus plexippus) and the common crow butterfly (Euploea core). Dreisbach D; Bhandari DR; Betz A; Tenbusch L; Vilcinskas A; Spengler B; Petschenka G Mol Ecol Resour; 2023 Aug; 23(6):1195-1210. PubMed ID: 36941779 [TBL] [Abstract][Full Text] [Related]
18. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica. Zhang RR; Tian HY; Tan YF; Chung TY; Sun XH; Xia X; Ye WC; Middleton DA; Fedosova N; Esmann M; Tzen JT; Jiang RW Org Biomol Chem; 2014 Nov; 12(44):8919-29. PubMed ID: 25270760 [TBL] [Abstract][Full Text] [Related]
19. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. Tao L; Hoang KM; Hunter MD; de Roode JC J Anim Ecol; 2016 Sep; 85(5):1246-54. PubMed ID: 27286503 [TBL] [Abstract][Full Text] [Related]
20. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Rubiano-Buitrago P; Pradhan S; Paetz C; Rowland HM Molecules; 2022 Dec; 28(1):. PubMed ID: 36615300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]