These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29684067)

  • 1. Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio).
    Uusi-Mäkelä MIE; Barker HR; Bäuerlein CA; Häkkinen T; Nykter M; Rämet M
    PLoS One; 2018; 13(4):e0196238. PubMed ID: 29684067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.
    Chen Y; Zeng S; Hu R; Wang X; Huang W; Liu J; Wang L; Liu G; Cao Y; Zhang Y
    PLoS One; 2017; 12(8):e0182528. PubMed ID: 28800611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis.
    Lee RT; Ng AS; Ingham PW
    PLoS One; 2016; 11(11):e0166020. PubMed ID: 27832146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating Zebrafish RNA-Less Mutant Alleles by Deleting Gene Promoters with CRISPR/Cas9.
    Kumari P; Sturgeon M; Bonde G; Cornell RA
    Methods Mol Biol; 2022; 2403():91-106. PubMed ID: 34913119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.
    Yin L; Maddison LA; Li M; Kara N; LaFave MC; Varshney GK; Burgess SM; Patton JG; Chen W
    Genetics; 2015 Jun; 200(2):431-41. PubMed ID: 25855067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Functional Genetic Study Models in Zebrafish Using CRISPR-Cas9.
    Carmona-Aldana F; Nuñez-Martinez HN; Peralta-Alvarez CA; Tapia-Urzua G; Recillas-Targa F
    Methods Mol Biol; 2021; 2174():255-262. PubMed ID: 32813255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPRz: a database of zebrafish validated sgRNAs.
    Varshney GK; Zhang S; Pei W; Adomako-Ankomah A; Fohtung J; Schaffer K; Carrington B; Maskeri A; Slevin C; Wolfsberg T; Ledin J; Sood R; Burgess SM
    Nucleic Acids Res; 2016 Jan; 44(D1):D822-6. PubMed ID: 26438539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of CRISPR gene-editing tools in zebrafish.
    Uribe-Salazar JM; Kaya G; Sekar A; Weyenberg K; Ingamells C; Dennis MY
    BMC Genomics; 2022 Jan; 23(1):12. PubMed ID: 34986794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of novel domain-specific mutations in the zebrafish
    Turner AN; Andersen RS; Bookout IE; Brashear LN; Davis JC; Gahan DM; Davis JC; Gotham JP; Hijaz BA; Kaushik AS; Mcgill JB; Miller VL; Moseley ZP; Nowell CL; Patel RK; Rodgers MC; Patel RK; Shihab YA; Walker AP; Glover SR; Foster SD; Challa AK
    J Genet; 2018 Dec; 97(5):1315-1325. PubMed ID: 30555080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish.
    Amorim JP; Bordeira-Carriço R; Gali-Macedo A; Perrod C; Bessa J
    STAR Protoc; 2020 Dec; 1(3):100208. PubMed ID: 33377102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System.
    Yin L; Jao LE; Chen W
    Methods Mol Biol; 2015; 1332():205-17. PubMed ID: 26285757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9.
    Varshney GK; Pei W; LaFave MC; Idol J; Xu L; Gallardo V; Carrington B; Bishop K; Jones M; Li M; Harper U; Huang SC; Prakash A; Chen W; Sood R; Ledin J; Burgess SM
    Genome Res; 2015 Jul; 25(7):1030-42. PubMed ID: 26048245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified method for identifying early CRISPR-induced indels in zebrafish embryos using High Resolution Melting analysis.
    Samarut É; Lissouba A; Drapeau P
    BMC Genomics; 2016 Aug; 17():547. PubMed ID: 27491876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish.
    Ota S; Taimatsu K; Yanagi K; Namiki T; Ohga R; Higashijima SI; Kawahara A
    Sci Rep; 2016 Oct; 6():34991. PubMed ID: 27725766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microinjection of Antisense Morpholinos, CRISPR/Cas9 RNP, and RNA/DNA into Zebrafish Embryos.
    Xin Y; Duan C
    Methods Mol Biol; 2018; 1742():205-211. PubMed ID: 29330802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Repetitive Sequences in Fish Cell Depletion as a Target for the CRISPR/Cas9 System.
    Zhang Y; Xia H; Peng W; Liu L; Liu L; Yang P
    Mar Biotechnol (NY); 2024 Aug; 26(4):639-648. PubMed ID: 38833200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.