These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29684098)

  • 1. BinQuasi: a peak detection method for ChIP-sequencing data with biological replicates.
    Goren E; Liu P; Wang C; Wang C
    Bioinformatics; 2018 Sep; 34(17):2909-2917. PubMed ID: 29684098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DiffChIPL: a differential peak analysis method for high-throughput sequencing data with biological replicates based on limma.
    Chen Y; Chen S; Lei EP
    Bioinformatics; 2022 Sep; 38(17):4062-4069. PubMed ID: 35809062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data.
    Ravanmehr V; Kim M; Wang Z; Milenkovic O
    Bioinformatics; 2018 Mar; 34(6):911-919. PubMed ID: 29087447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
    Newell R; Pienaar R; Balderson B; Piper M; Essebier A; Bodén M
    Genomics; 2021 Jul; 113(4):1855-1866. PubMed ID: 33878366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.
    Stricker G; Engelhardt A; Schulz D; Schmid M; Tresch A; Gagneur J
    Bioinformatics; 2017 Aug; 33(15):2258-2265. PubMed ID: 28369277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic partitioning methods to find significant patterns in ChIP-Seq data.
    Nair NU; Kumar S; Moret BM; Bucher P
    Bioinformatics; 2014 Sep; 30(17):2406-13. PubMed ID: 24812341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sierra platinum: a fast and robust peak-caller for replicated ChIP-seq experiments with visual quality-control and -steering.
    Müller L; Gerighausen D; Farman M; Zeckzer D
    BMC Bioinformatics; 2016 Sep; 17(1):377. PubMed ID: 27634469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
    Nakato R; Shirahige K
    Bioinformatics; 2018 Jul; 34(14):2356-2363. PubMed ID: 29528371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
    Benidt S; Nettleton D
    Bioinformatics; 2015 Jul; 31(13):2131-40. PubMed ID: 25725090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JAMM: a peak finder for joint analysis of NGS replicates.
    Ibrahim MM; Lacadie SA; Ohler U
    Bioinformatics; 2015 Jan; 31(1):48-55. PubMed ID: 25223640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zerone: a ChIP-seq discretizer for multiple replicates with built-in quality control.
    Cuscó P; Filion GJ
    Bioinformatics; 2016 Oct; 32(19):2896-902. PubMed ID: 27288492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.
    Hocking TD; Goerner-Potvin P; Morin A; Shao X; Pastinen T; Bourque G
    Bioinformatics; 2017 Feb; 33(4):491-499. PubMed ID: 27797775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LanceOtron: a deep learning peak caller for genome sequencing experiments.
    Hentges LD; Sergeant MJ; Cole CB; Downes DJ; Hughes JR; Taylor S
    Bioinformatics; 2022 Sep; 38(18):4255-4263. PubMed ID: 35866989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pasha: a versatile R package for piling chromatin HTS data.
    Fenouil R; Descostes N; Spinelli L; Koch F; Maqbool MA; Benoukraf T; Cauchy P; Innocenti C; Ferrier P; Andrau JC
    Bioinformatics; 2016 Aug; 32(16):2528-30. PubMed ID: 27153642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal model for multiple ChIP-seq experiments.
    Ranciati S; Viroli C; Wit E
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):211-9. PubMed ID: 25741742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting differential peaks in ChIP-seq signals with ODIN.
    Allhoff M; Seré K; Chauvistré H; Lin Q; Zenke M; Costa IG
    Bioinformatics; 2014 Dec; 30(24):3467-75. PubMed ID: 25371479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential peak calling of ChIP-seq signals with replicates with THOR.
    Allhoff M; Seré K; F Pires J; Zenke M; G Costa I
    Nucleic Acids Res; 2016 Nov; 44(20):e153. PubMed ID: 27484474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.