These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29684243)
1. Biochemical and biophysical studies of Helicobacter pylori arginine decarboxylase, an enzyme important for acid adaptation in host. Alam M; Srivastava A; Dutta A; Sau AK IUBMB Life; 2018 Jul; 70(7):658-669. PubMed ID: 29684243 [TBL] [Abstract][Full Text] [Related]
2. Structural studies on the decameric S. typhimurium arginine decarboxylase (ADC): Pyridoxal 5'-phosphate binding induces conformational changes. Deka G; Bharath SR; Savithri HS; Murthy MRN Biochem Biophys Res Commun; 2017 Sep; 490(4):1362-1368. PubMed ID: 28694189 [TBL] [Abstract][Full Text] [Related]
3. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Dutta A; Mazumder M; Alam M; Gourinath S; Sau AK Biochem J; 2019 Dec; 476(23):3595-3614. PubMed ID: 31746966 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional insights into the regulation of Helicobacter pylori arginase activity by an evolutionary nonconserved motif. Srivastava A; Meena SK; Alam M; Nayeem SM; Deep S; Sau AK Biochemistry; 2013 Jan; 52(3):508-19. PubMed ID: 23270419 [TBL] [Abstract][Full Text] [Related]
5. An evolutionary non-conserved motif in Helicobacter pylori arginase mediates positioning of the loop containing the catalytic residue for catalysis. Dutta A; Sarkar D; Murarka P; Kausar T; Narayan S; Mazumder M; Ainavarapu SRK; Gourinath S; Sau AK Biochem J; 2021 Feb; 478(4):871-894. PubMed ID: 33480396 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori. Han C; Wang Q; Dong L; Sun H; Peng S; Chen J; Yang Y; Yue J; Shen X; Jiang H Biochem Biophys Res Commun; 2004 Jul; 319(4):1292-8. PubMed ID: 15194508 [TBL] [Abstract][Full Text] [Related]
8. Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori. Turgimbayeva A; Abeldenov S; Zharkov DO; Ishchenko AA; Ramankulov Y; Saparbaev M; Khassenov B PLoS One; 2018; 13(8):e0202232. PubMed ID: 30110394 [TBL] [Abstract][Full Text] [Related]
9. Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. Deng X; Lee J; Michael AJ; Tomchick DR; Goldsmith EJ; Phillips MA J Biol Chem; 2010 Aug; 285(33):25708-19. PubMed ID: 20534592 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum. Son HF; Kim KJ Biochem Biophys Res Commun; 2018 Jan; 495(2):1815-1821. PubMed ID: 29233695 [TBL] [Abstract][Full Text] [Related]
11. Inactive S298R disassembles the dodecameric L-aspartate 4-decarboxylase into dimers. Wang NC; Ko TP; Lee CY Biochem Biophys Res Commun; 2008 Sep; 374(1):134-7. PubMed ID: 18602363 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. Schoenhofen IC; Lunin VV; Julien JP; Li Y; Ajamian E; Matte A; Cygler M; Brisson JR; Aubry A; Logan SM; Bhatia S; Wakarchuk WW; Young NM J Biol Chem; 2006 Mar; 281(13):8907-16. PubMed ID: 16421095 [TBL] [Abstract][Full Text] [Related]
13. Insight into the role of a unique SSEHA motif in the activity and stability of Helicobacter pylori arginase. Srivastava A; Dwivedi N; Samanta U; Sau AK IUBMB Life; 2011 Nov; 63(11):1027-36. PubMed ID: 22031496 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the arginine decarboxylase gene (ORF HP0422, speA) involved in acid tolerance in Helicobacter pylori. Valenzuela M; Cáceres A; Almarza O; Bravo D; Soto S; Cerda O; Toledo H Helicobacter; 2014 Jun; 19(3):182-93. PubMed ID: 24628778 [TBL] [Abstract][Full Text] [Related]
15. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Momany C; Ghosh R; Hackert ML Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a Novel Shewanella algae Arginine Decarboxylase Expressed in Escherichia coli. Pei XD; Lu LH; Yue SY; Li Y; Liu XL; Li F; Wu KJ; Wang CH Mol Biotechnol; 2022 Jan; 64(1):57-65. PubMed ID: 34532832 [TBL] [Abstract][Full Text] [Related]
17. Biochemical studies on Helicobacter pylori arginase: insight into the difference in activity compared to other arginases. Srivastava A; Sau AK IUBMB Life; 2010 Dec; 62(12):906-15. PubMed ID: 21190293 [TBL] [Abstract][Full Text] [Related]
18. pH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase. Zhou X; Toney MD Biochemistry; 1999 Jan; 38(1):311-20. PubMed ID: 9890912 [TBL] [Abstract][Full Text] [Related]
19. Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme. Balasundaram D; Tyagi AK Eur J Biochem; 1989 Aug; 183(2):339-45. PubMed ID: 2667997 [TBL] [Abstract][Full Text] [Related]
20. A new beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Helicobacter pylori: Molecular cloning, enzymatic characterization, and structural modeling. Liu W; Luo C; Han C; Peng S; Yang Y; Yue J; Shen X; Jiang H Biochem Biophys Res Commun; 2005 Aug; 333(4):1078-86. PubMed ID: 15967411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]