These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29684463)

  • 21. Automatic matching of homologous histological sections.
    Cohen FS; Yang Z; Huang Z; Nissanov J
    IEEE Trans Biomed Eng; 1998 May; 45(5):642-9. PubMed ID: 9581063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Registration of serial sections of mouse liver cell nuclei.
    Baheerathan S; Albregtsen F; Danielsen HE
    J Microsc; 1998 Oct; 192(Pt 1):37-53. PubMed ID: 9848269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Semi-Automated Workflow for Brain Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ).
    Lauridsen K; Ly A; Prévost ED; McNulty C; McGovern DJ; Tay JW; Dragavon J; Root DH
    eNeuro; 2022; 9(2):. PubMed ID: 35396257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An active texture-based digital atlas enables automated mapping of structures and markers across brains.
    Chen Y; McElvain LE; Tolpygo AS; Ferrante D; Friedman B; Mitra PP; Karten HJ; Freund Y; Kleinfeld D
    Nat Methods; 2019 Apr; 16(4):341-350. PubMed ID: 30858600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelet-based multi-resolution statistics for optical imaging signals: Application to automated detection of odour activated glomeruli in the mouse olfactory bulb.
    Bathellier B; Van De Ville D; Blu T; Unser M; Carleton A
    Neuroimage; 2007 Feb; 34(3):1020-35. PubMed ID: 17185002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Odor maps in the olfactory cortex.
    Zou Z; Li F; Buck LB
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7724-9. PubMed ID: 15911779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains.
    Rohlfing T; Brandt R; Menzel R; Maurer CR
    Neuroimage; 2004 Apr; 21(4):1428-42. PubMed ID: 15050568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Matching a computerized brain atlas to multimodal medical images.
    Rizzo G; Scifo P; Gilardi MC; Bettinardi V; Grassi F; Cerutti S; Fazio F
    Neuroimage; 1997 Jul; 6(1):59-69. PubMed ID: 9245655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Odor-evoked activity is spatially distributed in piriform cortex.
    Illig KR; Haberly LB
    J Comp Neurol; 2003 Mar; 457(4):361-73. PubMed ID: 12561076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Fidelity Imaging in Brain-Wide Structural Studies Using Light-Sheet Microscopy.
    Müllenbroich MC; Silvestri L; Di Giovanna AP; Mazzamuto G; Costantini I; Sacconi L; Pavone FS
    eNeuro; 2018; 5(6):. PubMed ID: 30627630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CBA--an atlas-based software tool used to facilitate the interpretation of neuroimaging data.
    Thurfjell L; Bohm C; Bengtsson E
    Comput Methods Programs Biomed; 1995 Jun; 47(1):51-71. PubMed ID: 7554863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.
    Shao YF; Wang C; Xie JF; Kong XP; Xin L; Dong CY; Li J; Ren WT; Hou YP
    Brain Struct Funct; 2016 Jul; 221(6):3327-36. PubMed ID: 26323488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.
    Kuan L; Li Y; Lau C; Feng D; Bernard A; Sunkin SM; Zeng H; Dang C; Hawrylycz M; Ng L
    Methods; 2015 Feb; 73():4-17. PubMed ID: 25536338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
    Roy S; Wang WT; Carass A; Prince JL; Butman JA; Pham DL
    J Nucl Med; 2014 Dec; 55(12):2071-7. PubMed ID: 25413135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of MRI-based 3D digital atlas registration with histological and autoradiographic volumes: an anatomofunctional transgenic mouse brain imaging study.
    Lebenberg J; Hérard AS; Dubois A; Dauguet J; Frouin V; Dhenain M; Hantraye P; Delzescaux T
    Neuroimage; 2010 Jul; 51(3):1037-46. PubMed ID: 20226256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image registration with auto-mapped control volumes.
    Schreibmann E; Xing L
    Med Phys; 2006 Apr; 33(4):1165-79. PubMed ID: 16696494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain.
    Pagani M; Damiano M; Galbusera A; Tsaftaris SA; Gozzi A
    J Neurosci Methods; 2016 Jul; 267():62-73. PubMed ID: 27079699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A semi-automated brain atlas-based analysis pipeline for c-Fos immunohistochemical data.
    Bourgeois JR; Kalyanasundaram G; Figueroa C; Srinivasan A; Kopec AM
    J Neurosci Methods; 2021 Jan; 348():108982. PubMed ID: 33091429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.