These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29684498)

  • 1. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models.
    Sulheim E; Kim J; van Wamel A; Kim E; Snipstad S; Vidic I; Grimstad IH; Widerøe M; Torp SH; Lundgren S; Waxman DJ; de Lange Davies C
    J Control Release; 2018 Jun; 279():292-305. PubMed ID: 29684498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution 3D visualization of nanomedicine distribution in tumors.
    Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST
    Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.
    Rapoport N; Gao Z; Kennedy A
    J Natl Cancer Inst; 2007 Jul; 99(14):1095-106. PubMed ID: 17623798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.
    Miller MA; Gadde S; Pfirschke C; Engblom C; Sprachman MM; Kohler RH; Yang KS; Laughney AM; Wojtkiewicz G; Kamaly N; Bhonagiri S; Pittet MJ; Farokhzad OC; Weissleder R
    Sci Transl Med; 2015 Nov; 7(314):314ra183. PubMed ID: 26582898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.
    Zhang B; Jiang T; Tuo Y; Jin K; Luo Z; Shi W; Mei H; Hu Y; Pang Z; Jiang X
    Cancer Lett; 2017 Dec; 410():12-19. PubMed ID: 28939029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect.
    Goos JACM; Cho A; Carter LM; Dilling TR; Davydova M; Mandleywala K; Puttick S; Gupta A; Price WS; Quinn JF; Whittaker MR; Lewis JS; Davis TP
    Theranostics; 2020; 10(2):567-584. PubMed ID: 31903138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Ultrasound on the Vasculature and Extravasation of Nanoscale Particles Imaged in Real Time.
    Yemane PT; Åslund AKO; Snipstad S; Bjørkøy A; Grendstad K; Berg S; Mørch Y; Torp SH; Hansen R; Davies CL
    Ultrasound Med Biol; 2019 Nov; 45(11):3028-3041. PubMed ID: 31474384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation.
    Wang HF; Ran R; Liu Y; Hui Y; Zeng B; Chen D; Weitz DA; Zhao CX
    ACS Nano; 2018 Nov; 12(11):11600-11609. PubMed ID: 30380832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo.
    Hu Q; Wang XY; Kang LK; Wei HM; Xu CM; Wang T; Wen ZH
    PLoS One; 2016; 11(2):e0149075. PubMed ID: 26862757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound.
    Cooley MB; Wegierak D; Exner AA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1957. PubMed ID: 38558290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts.
    Pöschinger T; Renner A; Eisa F; Dobosz M; Strobel S; Weber TG; Brauweiler R; Kalender WA; Scheuer W
    Invest Radiol; 2014 Jul; 49(7):445-56. PubMed ID: 24598441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.
    Theek B; Gremse F; Kunjachan S; Fokong S; Pola R; Pechar M; Deckers R; Storm G; Ehling J; Kiessling F; Lammers T
    J Control Release; 2014 May; 182():83-9. PubMed ID: 24631862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery.
    Han H; Lee H; Kim K; Kim H
    J Control Release; 2017 Nov; 266():75-86. PubMed ID: 28928042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice.
    Kato Y; Zhu W; Backer MV; Neoh CC; Hapuarachchige S; Sarkar SK; Backer JM; Artemov D
    Pharm Res; 2015 Nov; 32(11):3746-3755. PubMed ID: 26078000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of preclinical mouse models of high-grade glioma for nanomedicine research: the importance of reproducing blood-brain barrier heterogeneity.
    Brighi C; Reid L; Genovesi LA; Kojic M; Millar A; Bruce Z; White AL; Day BW; Rose S; Whittaker AK; Puttick S
    Theranostics; 2020; 10(14):6361-6371. PubMed ID: 32483457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small, Long Blood Half-Life Iodine Nanoparticle for Vascular and Tumor Imaging.
    Hainfeld JF; Ridwan SM; Stanishevskiy Y; Smilowitz NR; Davis J; Smilowitz HM
    Sci Rep; 2018 Sep; 8(1):13803. PubMed ID: 30218059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound.
    Morse SV; Boltersdorf T; Harriss BI; Chan TG; Baxan N; Jung HS; Pouliopoulos AN; Choi JJ; Long NJ
    Theranostics; 2020; 10(6):2659-2674. PubMed ID: 32194827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment and monitoring tumor vascularity with contrast-enhanced ultrasound maximum intensity persistence imaging.
    Pysz MA; Foygel K; Panje CM; Needles A; Tian L; Willmann JK
    Invest Radiol; 2011 Mar; 46(3):187-95. PubMed ID: 21150790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment.
    de Maar JS; Sofias AM; Porta Siegel T; Vreeken RJ; Moonen C; Bos C; Deckers R
    Theranostics; 2020; 10(4):1884-1909. PubMed ID: 32042343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy.
    Hak S; Cebulla J; Huuse EM; Davies Cde L; Mulder WJ; Larsson HB; Haraldseth O
    Angiogenesis; 2014 Jan; 17(1):93-107. PubMed ID: 23982332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.