These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29684719)

  • 1. Interhelical interactions between D92 and C218 in the cytoplasmic domain regulate proton uptake upon N-decay in the proton transport of Acetabularia rhodopsin II.
    Tamogami J; Kikukawa T; Ohkawa K; Ohsawa N; Nara T; Demura M; Miyauchi S; Kimura-Someya T; Shirouzu M; Yokoyama S; Shimono K; Kamo N
    J Photochem Photobiol B; 2018 Jun; 183():35-45. PubMed ID: 29684719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga.
    Wada T; Shimono K; Kikukawa T; Hato M; Shinya N; Kim SY; Kimura-Someya T; Shirouzu M; Tamogami J; Miyauchi S; Jung KH; Kamo N; Yokoyama S
    J Mol Biol; 2011 Sep; 411(5):986-98. PubMed ID: 21726566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry of Acetabularia rhodopsin II from a marine plant, Acetabularia acetabulum.
    Kikukawa T; Shimono K; Tamogami J; Miyauchi S; Kim SY; Kimura-Someya T; Shirouzu M; Jung KH; Yokoyama S; Kamo N
    Biochemistry; 2011 Oct; 50(41):8888-98. PubMed ID: 21905737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum.
    Furuse M; Tamogami J; Hosaka T; Kikukawa T; Shinya N; Hato M; Ohsawa N; Kim SY; Jung KH; Demura M; Miyauchi S; Kamo N; Shimono K; Kimura-Someya T; Yokoyama S; Shirouzu M
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2203-16. PubMed ID: 26527138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Existence of two O-like intermediates in the photocycle of
    Tamogami J; Kikukawa T; Nara T; Demura M; Kimura-Someya T; Shirouzu M; Yokoyama S; Miyauchi S; Shimono K; Kamo N
    Biophys Physicobiol; 2017; 14():49-55. PubMed ID: 28560129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate.
    Gat Y; Friedman N; Sheves M; Ottolenghi M
    Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetabularia rhodopsin I is a light-stimulated proton pump.
    Lee SS; Choi AR; Kim SY; Kang HW; Jung KH; Lee JH
    J Nanosci Nanotechnol; 2011 May; 11(5):4596-600. PubMed ID: 21780504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory rhodopsin II from the haloalkaliphilic natronobacterium pharaonis: light-activated proton transfer reactions.
    Schmies G; Lüttenberg B; Chizhov I; Engelhard M; Becker A; Bamberg E
    Biophys J; 2000 Feb; 78(2):967-76. PubMed ID: 10653809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state.
    Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP
    Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H+ -pumping rhodopsin from the marine alga Acetabularia.
    Tsunoda SP; Ewers D; Gazzarrini S; Moroni A; Gradmann D; Hegemann P
    Biophys J; 2006 Aug; 91(4):1471-9. PubMed ID: 16731558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of proton release and uptake by channelrhodopsin-2.
    Nack M; Radu I; Schultz BJ; Resler T; Schlesinger R; Bondar AN; del Val C; Abbruzzetti S; Viappiani C; Bamann C; Bamberg E; Heberle J
    FEBS Lett; 2012 May; 586(9):1344-8. PubMed ID: 22504075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced proton release in proteorhodopsin at low pH: the possibility of a decrease in the pK(a) of Asp227.
    Tamogami J; Kikukawa T; Nara T; Shimono K; Demura M; Kamo N
    Biochemistry; 2012 Nov; 51(46):9290-301. PubMed ID: 23095117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role of Asp227 in the photocycle of proteorhodopsin.
    Herz J; Verhoefen MK; Weber I; Bamann C; Glaubitz C; Wachtveitl J
    Biochemistry; 2012 Jul; 51(28):5589-600. PubMed ID: 22738119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and pH dependence of light-induced deprotonation of the Schiff base of rhodopsin: possible coupling to proton uptake and formation of the active form of Meta II.
    Kuwata O; Yuan C; Misra S; Govindjee R; Ebrey TG
    Biochemistry (Mosc); 2001 Nov; 66(11):1283-99. PubMed ID: 11743873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Dec; 279(53):55886-94. PubMed ID: 15475355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin.
    Brown LS; Dioumaev AK; Lanyi JK; Spudich EN; Spudich JL
    J Biol Chem; 2001 Aug; 276(35):32495-505. PubMed ID: 11435422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H
    Inoue S; Yoshizawa S; Nakajima Y; Kojima K; Tsukamoto T; Kikukawa T; Sudo Y
    Phys Chem Chem Phys; 2018 Jan; 20(5):3172-3183. PubMed ID: 29034950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.