BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29684746)

  • 1. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review.
    Li X; Lan SM; Zhu ZP; Zhang C; Zeng GM; Liu YG; Cao WC; Song B; Yang H; Wang SF; Wu SH
    Ecotoxicol Environ Saf; 2018 Aug; 158():162-170. PubMed ID: 29684746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.
    van den Brand TP; Roest K; Chen GH; Brdjanovic D; van Loosdrecht MC
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1675-81. PubMed ID: 26362530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation. Anaerobes to the rescue.
    Lovley DR
    Science; 2001 Aug; 293(5534):1444-6. PubMed ID: 11520973
    [No Abstract]   [Full Text] [Related]  

  • 6. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ecology and biotechnology of sulphate-reducing bacteria.
    Muyzer G; Stams AJ
    Nat Rev Microbiol; 2008 Jun; 6(6):441-54. PubMed ID: 18461075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in dissimilatory sulfate reduction: From metabolic study to application.
    Qian Z; Tianwei H; Mackey HR; van Loosdrecht MCM; Guanghao C
    Water Res; 2019 Mar; 150():162-181. PubMed ID: 30508713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    Bioresour Technol; 2013 Jan; 128():818-22. PubMed ID: 23182037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage.
    Utgikar VP; Harmon SM; Chaudhary N; Tabak HH; Govind R; Haines JR
    Environ Toxicol; 2002 Feb; 17(1):40-8. PubMed ID: 11847973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of sulfate-rich and low pH wastewater by sulfate reducing bacteria with iron shavings in a laboratory.
    Liu X; Gong W; Liu L
    Water Sci Technol; 2014; 69(3):595-600. PubMed ID: 24552733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery.
    Johnson DB; Sánchez-Andrea I
    Adv Microb Physiol; 2019; 75():205-231. PubMed ID: 31655738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate reduction at low pH to remediate acid mine drainage.
    Sánchez-Andrea I; Sanz JL; Bijmans MF; Stams AJ
    J Hazard Mater; 2014 Mar; 269():98-109. PubMed ID: 24444599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.