These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 29684868)

  • 1. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.
    Tippawan P; Arpornwichanop A
    Bioresour Technol; 2014 Apr; 157():231-9. PubMed ID: 24561628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.
    Hassan EA; Abd-Alla MH; Bagy MM; Morsy FM
    Anaerobe; 2015 Aug; 34():125-31. PubMed ID: 26014369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst.
    Chen LC; Cheng H; Chiang CW; Lin SD
    ChemSusChem; 2015 May; 8(10):1787-93. PubMed ID: 25876558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy and exergy analyses of a biomass-based hydrogen production system.
    Cohce MK; Dincer I; Rosen MA
    Bioresour Technol; 2011 Sep; 102(18):8466-74. PubMed ID: 21724387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: effect of the support.
    Cai W; Piscina PR; Gabrowska K; Homs N
    Bioresour Technol; 2013 Jan; 128():467-71. PubMed ID: 23201530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling sugarcane press-mud fermentation to increase bioethanol steam reforming for hydrogen production.
    Sanchez N; Ruiz RY; Cifuentes B; Cobo M
    Waste Manag; 2019 Oct; 98():1-13. PubMed ID: 31421484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii.
    Mu X; Sun W; Liu C; Wang H
    Biotechnol Lett; 2011 Aug; 33(8):1587-91. PubMed ID: 21424838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.
    Bauer A; Bösch P; Friedl A; Amon T
    J Biotechnol; 2009 Jun; 142(1):50-5. PubMed ID: 19480947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass.
    Karakashev D; Thomsen AB; Angelidaki I
    Biotechnol Lett; 2007 Jul; 29(7):1005-12. PubMed ID: 17410339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis on production of bioethanol for hydrogen generation.
    Palanisamy A; Soundarrajan N; Ramasamy G
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63690-63705. PubMed ID: 34050510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
    Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analyses of a biomass-coal co-gasification power generation system.
    Yan L; Yue G; He B
    Bioresour Technol; 2016 Apr; 205():133-41. PubMed ID: 26826573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated CO
    Papalas T; Antzaras AN; Lemonidou AA
    Energy Fuels; 2024 Jul; 38(13):11966-11979. PubMed ID: 38984063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetone, butanol, and ethanol production from wastewater algae.
    Ellis JT; Hengge NN; Sims RC; Miller CD
    Bioresour Technol; 2012 May; 111():491-5. PubMed ID: 22366611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable Butanol Production via Catalytic Routes.
    Choi H; Han J; Lee J
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.