These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29684887)

  • 21. Dynamically adaptive control system for bioanodes in serially stacked bioelectrochemical systems.
    Andersen SJ; Pikaar I; Freguia S; Lovell BC; Rabaey K; Rozendal RA
    Environ Sci Technol; 2013 May; 47(10):5488-94. PubMed ID: 23593927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.
    Kondrachova L; Hahn BP; Vijayaraghavan G; Williams RD; Stevenson KJ
    Langmuir; 2006 Dec; 22(25):10490-8. PubMed ID: 17129020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox characteristics of the tungsten DMSO reductase of Rhodobacter capsulatus.
    Hagedoorn PL; Hagen WR; Stewart LJ; Docrat A; Bailey S; Garner CD
    FEBS Lett; 2003 Dec; 555(3):606-10. PubMed ID: 14675782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR and DFT studies of the complexation of W(VI) and Mo(VI) with 3-phospho-D-glyceric and 2-phospho-D-glyceric acids.
    Ramos ML; Justino LL; Gil VM; Burrows HD
    Dalton Trans; 2009 Nov; (43):9616-24. PubMed ID: 19859617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. H
    Rivera I; Bakonyi P; Buitrón G
    Chemosphere; 2017 Mar; 171():379-385. PubMed ID: 28033568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.
    Rago L; Baeza JA; Guisasola A
    Bioelectrochemistry; 2016 Jun; 109():57-62. PubMed ID: 26855359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the nature of the metal atom on hydrogen bonding and proton transfer to [Cp*MH3(dppe)]: tungsten versus molybdenum.
    Belkova NV; Besora M; Baya M; Dub PA; Epstein LM; Lledós A; Poli R; Revin PO; Shubina ES
    Chemistry; 2008; 14(32):9921-34. PubMed ID: 18810747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible control of biohythane composition and production by dual cathodes in a bioelectrochemical system.
    Li X; Liu G; He Z
    Bioresour Technol; 2020 Jan; 295():122270. PubMed ID: 31678890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exfoliated molybdenum di-sulfide (MoS
    Rozenfeld S; Teller H; Schechter M; Farber R; Krichevski O; Schechter A; Cahan R
    Bioelectrochemistry; 2018 Oct; 123():201-210. PubMed ID: 29807268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced performance of bioelectrochemical hydrogen production using a pH control strategy.
    Ruiz Y; Baeza JA; Guisasola A
    ChemSusChem; 2015 Jan; 8(2):389-97. PubMed ID: 25469743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.
    Guo K; Hidalgo D; Tommasi T; Rabaey K
    Bioresour Technol; 2016 Jul; 211():664-8. PubMed ID: 27058401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells.
    Wang X; Rossi R; Yan Z; Yang W; Hickner MA; Mallouk TE; Logan BE
    Environ Sci Technol; 2019 Dec; 53(24):14761-14768. PubMed ID: 31713416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.
    Huang L; Chen J; Quan X; Yang F
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
    Zhang F; Saito T; Cheng S; Hickner MA; Logan BE
    Environ Sci Technol; 2010 Feb; 44(4):1490-5. PubMed ID: 20099808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New property-performance optimization of scalable alginate-g-terpolymer for Ce(IV), Mo(VI), and W(VI) exclusions.
    Mondal H; Karmakar M; Chattopadhyay PK; Singha NR
    Carbohydr Polym; 2020 Oct; 245():116370. PubMed ID: 32718590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine.
    Sakai S; Yagishita T
    Biotechnol Bioeng; 2007 Oct; 98(2):340-8. PubMed ID: 17390385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems.
    Harnisch F; Schröder U
    Chem Soc Rev; 2010 Nov; 39(11):4433-48. PubMed ID: 20830322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes.
    Liu YX; Yuan DX; Yan JM; Li QL; Ouyang T
    J Hazard Mater; 2011 Feb; 186(1):473-80. PubMed ID: 21122989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.