These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29685968)

  • 1. Impact of dietary gut microbial metabolites on the epigenome.
    Gerhauser C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications in the Host.
    D'Aquila P; Carelli LL; De Rango F; Passarino G; Bellizzi D
    Nutrients; 2020 Feb; 12(3):. PubMed ID: 32106534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals.
    Bhat MI; Kapila R
    Nutr Rev; 2017 May; 75(5):374-389. PubMed ID: 28444216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More than just a gut instinct-the potential interplay between a baby's nutrition, its gut microbiome, and the epigenome.
    Mischke M; Plösch T
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(12):R1065-9. PubMed ID: 23594611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay between diet, gut microbes, and host epigenetics in health and disease.
    Shock T; Badang L; Ferguson B; Martinez-Guryn K
    J Nutr Biochem; 2021 Sep; 95():108631. PubMed ID: 33789148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases.
    Chen B; Sun L; Zhang X
    J Autoimmun; 2017 Sep; 83():31-42. PubMed ID: 28342734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk.
    Meyer KA; Bennett BJ
    Curr Diab Rep; 2016 Oct; 16(10):93. PubMed ID: 27541295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics.
    Li D; Li Y; Yang S; Lu J; Jin X; Wu M
    Biomed Pharmacother; 2022 Sep; 153():113290. PubMed ID: 35724509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of anthocyanins and consequent effects on the gut microbiota.
    Tian L; Tan Y; Chen G; Wang G; Sun J; Ou S; Chen W; Bai W
    Crit Rev Food Sci Nutr; 2019; 59(6):982-991. PubMed ID: 30595029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population.
    Bourdeau-Julien I; Castonguay-Paradis S; Rochefort G; Perron J; Lamarche B; Flamand N; Di Marzo V; Veilleux A; Raymond F
    Microbiome; 2023 Feb; 11(1):26. PubMed ID: 36774515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of metabolic potential of human gut microbiome in human nutrition.
    Yadav M; Verma MK; Chauhan NS
    Arch Microbiol; 2018 Mar; 200(2):203-217. PubMed ID: 29188341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation.
    Kasubuchi M; Hasegawa S; Hiramatsu T; Ichimura A; Kimura I
    Nutrients; 2015 Apr; 7(4):2839-49. PubMed ID: 25875123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues.
    Krautkramer KA; Kreznar JH; Romano KA; Vivas EI; Barrett-Wilt GA; Rabaglia ME; Keller MP; Attie AD; Rey FE; Denu JM
    Mol Cell; 2016 Dec; 64(5):982-992. PubMed ID: 27889451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk.
    Fellows R; Varga-Weisz P
    Mol Metab; 2020 Aug; 38():100925. PubMed ID: 31992511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut microbiota-mediated metabolism of green tea catechins and the biological consequences: An updated review.
    Liu C; Gan RY; Chen D; Zheng L; Ng SB; Rietjens IMCM
    Crit Rev Food Sci Nutr; 2024; 64(20):7067-7084. PubMed ID: 38975869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of gut microbiota with dietary polyphenols and consequences to human health.
    Tomás-Barberán FA; Selma MV; Espín JC
    Curr Opin Clin Nutr Metab Care; 2016 Nov; 19(6):471-476. PubMed ID: 27490306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the road to colorectal cancer development: crosstalk between the gut microbiota, metabolic reprogramming, and epigenetic modifications.
    Chen A; Jiang Z; Cai L; Tang D
    Carcinogenesis; 2023 Dec; 44(8-9):631-641. PubMed ID: 37586059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities.
    Kemperman RA; Bolca S; Roger LC; Vaughan EE
    Microbiology (Reading); 2010 Nov; 156(Pt 11):3224-3231. PubMed ID: 20724384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diet, the gut microbiome, and epigenetics.
    Hullar MA; Fu BC
    Cancer J; 2014; 20(3):170-5. PubMed ID: 24855003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods.
    Loo YT; Howell K; Chan M; Zhang P; Ng K
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1268-1298. PubMed ID: 33337077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.