BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29685980)

  • 1. Selective recognition of
    Rathi P; Maurer S; Summerer D
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats.
    Gieß M; Witte A; Jasper J; Koch O; Summerer D
    J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors.
    Buchmuller B; Muñoz-López Á; Gieß M; Summerer D
    Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.
    Rathi P; Maurer S; Kubik G; Summerer D
    J Am Chem Soc; 2016 Aug; 138(31):9910-8. PubMed ID: 27429302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.
    Rathi P; Witte A; Summerer D
    Sci Rep; 2017 Nov; 7(1):15067. PubMed ID: 29118409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine.
    Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D
    Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.
    Maurer S; Giess M; Koch O; Summerer D
    ACS Chem Biol; 2016 Dec; 11(12):3294-3299. PubMed ID: 27978710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors.
    Liu L; Zhang Y; Liu M; Wei W; Yi C; Peng J
    J Mol Biol; 2020 Feb; 432(4):1035-1047. PubMed ID: 31863750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition.
    Zhang Y; Liu L; Guo S; Song J; Zhu C; Yue Z; Wei W; Yi C
    Nat Commun; 2017 Oct; 8(1):901. PubMed ID: 29026078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.
    Kubik G; Summerer D
    Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer Receptors for Nucleotide-Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging.
    Muñoz-López Á; Buchmuller B; Wolffgramm J; Jung A; Hussong M; Kanne J; Schweiger MR; Summerer D
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8927-8931. PubMed ID: 32167219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Protein-DNA Cross-Linking for the Direct Capture and Quantification of 5-Formylcytosine.
    Gieß M; Muñoz-López Á; Buchmuller B; Kubik G; Summerer D
    J Am Chem Soc; 2019 Jun; 141(24):9453-9457. PubMed ID: 31180648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming conservation in TALE-DNA interactions: a minimal repeat scaffold enables selective recognition of an oxidized 5-methylcytosine.
    Maurer S; Buchmuller B; Ehrt C; Jasper J; Koch O; Summerer D
    Chem Sci; 2018 Sep; 9(36):7247-7252. PubMed ID: 30288245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC.
    Zagorskaitė E; Manakova E; Sasnauskas G
    FEBS Lett; 2018 Oct; 592(19):3335-3345. PubMed ID: 30194838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific recognition of methylated DNA by an engineered transcription activator-like effector protein.
    Tsuji S; Futaki S; Imanishi M
    Chem Commun (Camb); 2016 Dec; 52(99):14238-14241. PubMed ID: 27872906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs.
    Kubik G; Schmidt MJ; Penner JE; Summerer D
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):6002-6. PubMed ID: 24801054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N6-Position of Adenine Is a Blind Spot for TAL-Effectors That Enables Effective Binding of Methylated and Fluorophore-Labeled DNA.
    Flade S; Jasper J; Gieß M; Juhasz M; Dankers A; Kubik G; Koch O; Weinhold E; Summerer D
    ACS Chem Biol; 2017 Jul; 12(7):1719-1725. PubMed ID: 28493677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving single-nucleotide resolution of 5-methylcytosine detection with TALEs.
    Kubik G; Summerer D
    Chembiochem; 2015 Jan; 16(2):228-31. PubMed ID: 25522353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing.
    Yu M; Ji L; Neumann DA; Chung DH; Groom J; Westpheling J; He C; Schmitz RJ
    Nucleic Acids Res; 2015 Dec; 43(21):e148. PubMed ID: 26184871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors.
    Tsuji S; Imanishi M
    Adv Drug Deliv Rev; 2019 Jul; 147():59-65. PubMed ID: 31513826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.