These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 29685985)
81. Borrelia burgdorferi surface protein Lmp1 facilitates pathogen dissemination through ticks as studied by an artificial membrane feeding system. Koci J; Bernard Q; Yang X; Pal U Sci Rep; 2018 Jan; 8(1):1910. PubMed ID: 29382879 [TBL] [Abstract][Full Text] [Related]
82. Host-specific functional compartmentalization within the oligopeptide transporter during the Borrelia burgdorferi enzootic cycle. Groshong AM; McLain MA; Radolf JD PLoS Pathog; 2021 Jan; 17(1):e1009180. PubMed ID: 33428666 [TBL] [Abstract][Full Text] [Related]
83. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection. Skare JT; Shaw DK; Trzeciakowski JP; Hyde JA PLoS One; 2016; 11(9):e0162501. PubMed ID: 27611840 [TBL] [Abstract][Full Text] [Related]
84. DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence. Ye M; Zhang JJ; Fang X; Lawlis GB; Troxell B; Zhou Y; Gomelsky M; Lou Y; Yang XF Infect Immun; 2014 May; 82(5):1840-9. PubMed ID: 24566626 [TBL] [Abstract][Full Text] [Related]
85. The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Labandeira-Rey M; Seshu J; Skare JT Infect Immun; 2003 Aug; 71(8):4608-13. PubMed ID: 12874340 [TBL] [Abstract][Full Text] [Related]
86. Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. Xu H; Caimano MJ; Lin T; He M; Radolf JD; Norris SJ; Gherardini F; Wolfe AJ; Yang XF PLoS Pathog; 2010 Sep; 6(9):e1001104. PubMed ID: 20862323 [TBL] [Abstract][Full Text] [Related]
87. Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. Anguita J; Thomas V; Samanta S; Persinski R; Hernanz C; Barthold SW; Fikrig E J Immunol; 2001 Sep; 167(6):3383-90. PubMed ID: 11544329 [TBL] [Abstract][Full Text] [Related]
88. Potential Regulatory Role in Mammalian Host Adaptation for a Small Intergenic Region of Lp17 in the Lyme Disease Spirochete. Crowley MA; Bankhead T Front Cell Infect Microbiol; 2022; 12():892220. PubMed ID: 35586252 [TBL] [Abstract][Full Text] [Related]
89. Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi. Seshu J; Boylan JA; Gherardini FC; Skare JT Infect Immun; 2004 Mar; 72(3):1580-6. PubMed ID: 14977964 [TBL] [Abstract][Full Text] [Related]
90. Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Troy EB; Lin T; Gao L; Lazinski DW; Camilli A; Norris SJ; Hu LT Infect Immun; 2013 Jul; 81(7):2347-57. PubMed ID: 23608706 [TBL] [Abstract][Full Text] [Related]
92. The Borrelia burgdorferi Glycosaminoglycan Binding Protein Bgp in the B31 Strain Is Not Essential for Infectivity despite Facilitating Adherence and Tissue Colonization. Schlachter S; Seshu J; Lin T; Norris S; Parveen N Infect Immun; 2018 Feb; 86(2):. PubMed ID: 29158428 [TBL] [Abstract][Full Text] [Related]
93. Study of the response regulator Rrp1 reveals its regulatory role in chitobiose utilization and virulence of Borrelia burgdorferi. Sze CW; Smith A; Choi YH; Yang X; Pal U; Yu A; Li C Infect Immun; 2013 May; 81(5):1775-87. PubMed ID: 23478317 [TBL] [Abstract][Full Text] [Related]
94. BosR Is A Novel Fur Family Member Responsive to Copper and Regulating Copper Homeostasis in Borrelia burgdorferi. Wang P; Yu Z; Santangelo TJ; Olesik J; Wang Y; Heldwein E; Li X J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28583949 [TBL] [Abstract][Full Text] [Related]
95. Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Weening EH; Parveen N; Trzeciakowski JP; Leong JM; Höök M; Skare JT Infect Immun; 2008 Dec; 76(12):5694-705. PubMed ID: 18809667 [TBL] [Abstract][Full Text] [Related]
96. Use of in vivo Expression Technology for the Identification of Putative Host Adaptation Factors of the Lyme Disease Spirochete. Casselli T; Bankhead T J Mol Microbiol Biotechnol; 2015; 25(5):349-61. PubMed ID: 26488479 [TBL] [Abstract][Full Text] [Related]
97. Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Casselli T; Tourand Y; Bankhead T Infect Immun; 2012 May; 80(5):1773-82. PubMed ID: 22354033 [TBL] [Abstract][Full Text] [Related]
98. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. Ellis TC; Jain S; Linowski AK; Rike K; Bestor A; Rosa PA; Halpern M; Kurhanewicz S; Jewett MW PLoS Pathog; 2013; 9(8):e1003567. PubMed ID: 24009501 [TBL] [Abstract][Full Text] [Related]