BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29686359)

  • 1. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.
    Shcherbakova DM; Cox Cammer N; Huisman TM; Verkhusha VV; Hodgson L
    Nat Chem Biol; 2018 Jun; 14(6):591-600. PubMed ID: 29686359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases.
    Pimenta FM; Huh J; Guzman B; Amanah D; Marston DJ; Pinkin NK; Danuser G; Hahn KM
    Biophys J; 2023 Sep; 122(18):3646-3655. PubMed ID: 37085995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.
    Inaba H; Miao Q; Nakata T
    J Biol Chem; 2021; 296():100290. PubMed ID: 33453281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex Imaging of Rho GTPase Activities in Living Cells.
    Bhalla RM; Hülsemann M; Verkhusha PV; Walker MG; Shcherbakova DM; Hodgson L
    Methods Mol Biol; 2021; 2350():43-68. PubMed ID: 34331278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells.
    Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X
    Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fret-based single-molecule probes for monitoring induced activation of Rac, Cdc42 signaling pathways in living cells].
    Sun B; Ren DQ; Zhang QY; Qiu YL; Liu RS; Guo XR
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Oct; 41(5):349-58. PubMed ID: 19127770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM.
    Hinde E; Digman MA; Hahn KM; Gratton E
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):135-40. PubMed ID: 23248275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions.
    Hodgson L; Spiering D; Sabouri-Ghomi M; Dagliyan O; DerMardirossian C; Danuser G; Hahn KM
    Nat Chem Biol; 2016 Oct; 12(10):802-809. PubMed ID: 27501396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes.
    Yoshizaki H; Ohba Y; Kurokawa K; Itoh RE; Nakamura T; Mochizuki N; Nagashima K; Matsuda M
    J Cell Biol; 2003 Jul; 162(2):223-32. PubMed ID: 12860967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts.
    Wan Q; Cho E; Yokota H; Na S
    Biochem Biophys Res Commun; 2013 Apr; 433(4):502-7. PubMed ID: 23524265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex imaging of Rho family GTPase activities in living cells.
    Spiering D; Hodgson L
    Methods Mol Biol; 2012; 827():215-34. PubMed ID: 22144278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho GTPase isoforms in cell motility: Don't fret, we have FRET.
    Donnelly SK; Bravo-Cordero JJ; Hodgson L
    Cell Adh Migr; 2014; 8(6):526-34. PubMed ID: 25482645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.
    Wallrabe H; Sun Y; Fang X; Periasamy A; Bloom GS
    Cytometry A; 2015 Jun; 87(6):580-8. PubMed ID: 25755111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of Rho GTPase activities during cell protrusion.
    Machacek M; Hodgson L; Welch C; Elliott H; Pertz O; Nalbant P; Abell A; Johnson GL; Hahn KM; Danuser G
    Nature; 2009 Sep; 461(7260):99-103. PubMed ID: 19693013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed GTPase and GEF biosensor imaging enables network connectivity analysis.
    Marston DJ; Vilela M; Huh J; Ren J; Azoitei ML; Glekas G; Danuser G; Sondek J; Hahn KM
    Nat Chem Biol; 2020 Aug; 16(8):826-833. PubMed ID: 32424303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live show of Rho GTPases in cell migration.
    Yan X; Shen Y; Zhu X
    J Mol Cell Biol; 2010 Apr; 2(2):68-9. PubMed ID: 20008333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Tools To Study the Isoform-Specific Roles of Small GTPases in Immune Cells.
    Miskolci V; Wu B; Moshfegh Y; Cox D; Hodgson L
    J Immunol; 2016 Apr; 196(8):3479-93. PubMed ID: 26951800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Aoki K; Matsuda M
    Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion.
    Hirata E; Yukinaga H; Kamioka Y; Arakawa Y; Miyamoto S; Okada T; Sahai E; Matsuda M
    J Cell Sci; 2012 Feb; 125(Pt 4):858-68. PubMed ID: 22399802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.