These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29686407)
1. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging. Das D; Sivasubramanian K; Yang C; Pramanik M Sci Rep; 2018 Apr; 8(1):6401. PubMed ID: 29686407 [TBL] [Abstract][Full Text] [Related]
2. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. Jeon M; Song W; Huynh E; Kim J; Kim J; Helfield BL; Leung BY; Goertz DE; Zheng G; Oh J; Lovell JF; Kim C J Biomed Opt; 2014 Jan; 19(1):16005. PubMed ID: 24390438 [TBL] [Abstract][Full Text] [Related]
3. Multimodal VEGF-Targeted Contrast-Enhanced Ultrasound and Photoacoustic Imaging of Rats with Inflammatory Arthritis: Using Dye-VEGF-Antibody-Loaded Microbubbles. Zhao C; Zhang R; Luo Y; Liu S; Tang T; Yang F; Zhu L; He X; Yang M; Jiang Y Ultrasound Med Biol; 2020 Sep; 46(9):2400-2411. PubMed ID: 32522458 [TBL] [Abstract][Full Text] [Related]
4. Photoacoustic and Ultrasound Dual-Mode Imaging via Functionalization of Recombinant Protein-Stabilized Microbubbles with Methylene Blue. Chen Z; Chattaraj R; Pulsipher KW; Karmacharya MB; Hammer DA; Lee D; Sehgal CM ACS Appl Bio Mater; 2019 Sep; 2(9):4020-4026. PubMed ID: 35021335 [TBL] [Abstract][Full Text] [Related]
5. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation. Lin H; Chen J; Chen C Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369 [TBL] [Abstract][Full Text] [Related]
6. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. Wang YH; Liao AH; Chen JH; Wang CR; Li PC J Biomed Opt; 2012 Apr; 17(4):045001. PubMed ID: 22559675 [TBL] [Abstract][Full Text] [Related]
7. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. Das D; Pramanik M J Biomed Opt; 2019 Jul; 24(12):1-8. PubMed ID: 31342692 [TBL] [Abstract][Full Text] [Related]
8. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation. Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. Kim C; Qin R; Xu JS; Wang LV; Xu R J Biomed Opt; 2010; 15(1):010510. PubMed ID: 20210423 [TBL] [Abstract][Full Text] [Related]
10. Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles. Barmin RA; Moosavifar M; Zhang R; Rütten S; Thoröe-Boveleth S; Rama E; Ojha T; Kiessling F; Lammers T; Pallares RM J Mater Chem B; 2024 Mar; 12(10):2511-2522. PubMed ID: 38334758 [TBL] [Abstract][Full Text] [Related]
11. Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Kim C; Erpelding TN; Jankovic L; Wang LV Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1955):4644-50. PubMed ID: 22006911 [TBL] [Abstract][Full Text] [Related]
12. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259 [TBL] [Abstract][Full Text] [Related]
13. Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-clinical Demonstration. Singh N; Chérin E; Roa CF; Soenjaya Y; Wodlinger B; Zheng G; Wilson BC; Foster FS; Demore CEM Ultrasound Med Biol; 2024 Apr; 50(4):457-466. PubMed ID: 38238200 [TBL] [Abstract][Full Text] [Related]
14. Toward optimization of in vivo super-resolution ultrasound imaging using size-selected microbubble contrast agents. Ghosh D; Xiong F; Sirsi SR; Shaul PW; Mattrey RF; Hoyt K Med Phys; 2017 Dec; 44(12):6304-6313. PubMed ID: 28975635 [TBL] [Abstract][Full Text] [Related]
15. Wide-field three-dimensional photoacoustic/ultrasound scanner using a two-dimensional matrix transducer array. Kim W; Choi W; Ahn J; Lee C; Kim C Opt Lett; 2023 Jan; 48(2):343-346. PubMed ID: 36638453 [TBL] [Abstract][Full Text] [Related]
16. Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming. Paul S; Mulani S; Singh MKA; Singh MS Med Phys; 2023 Dec; 50(12):7525-7538. PubMed ID: 37843980 [TBL] [Abstract][Full Text] [Related]
17. Organic nanoparticle-doped microdroplets as dual-modality contrast agents for ultrasound microvascular flow and photoacoustic imaging. Xu Y; Sun G; Middha E; Liu YH; Chan KC; Liu B; Chen CH; Thakor NV Sci Rep; 2020 Oct; 10(1):17009. PubMed ID: 33046757 [TBL] [Abstract][Full Text] [Related]
18. Effects of shell-integrated Sudan Black dye on the acoustic activity and ultrasound imaging properties of lipid-shelled nanoscale ultrasound contrast agents. Wegierak D; Fishbein G; Abenojar E; De Leon A; Zhu J; Wang Y; Ferworn C; Exner AA; Kolios MC J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35064656 [TBL] [Abstract][Full Text] [Related]
19. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging. Hsieh BY; Chen SL; Ling T; Guo LJ; Li PC Opt Express; 2012 Jan; 20(2):1588-96. PubMed ID: 22274501 [TBL] [Abstract][Full Text] [Related]
20. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe. Wang Y; Erpelding TN; Jankovic L; Guo Z; Robert JL; David G; Wang LV J Biomed Opt; 2012 Jun; 17(6):061208. PubMed ID: 22734738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]