These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29687107)

  • 1. Multiparameter cell-tracking intrinsic cytometry for single-cell characterization.
    Apichitsopa N; Jaffe A; Voldman J
    Lab Chip; 2018 May; 18(10):1430-1439. PubMed ID: 29687107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye exclusion microfluidic microscopy.
    Schonbrun E; Di Caprio G; Schaak D
    Opt Express; 2013 Apr; 21(7):8793-8. PubMed ID: 23571968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic trapping, encapsulation and retrieval of single-cells.
    Sauzade M; Brouzes E
    Lab Chip; 2017 Jun; 17(13):2186-2192. PubMed ID: 28585962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Flow Cytometry for Single-Cell Protein Analysis.
    Wu M; Singh AK
    Methods Mol Biol; 2015; 1346():69-83. PubMed ID: 26542716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.
    Wang K; Zhao Y; Chen D; Huang C; Fan B; Long R; Hsieh CH; Wang J; Wu MH; Chen J
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software.
    Kaiser M; Jug F; Julou T; Deshpande S; Pfohl T; Silander OK; Myers G; van Nimwegen E
    Nat Commun; 2018 Jan; 9(1):212. PubMed ID: 29335514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic array with cellular valving for single cell co-culture.
    Frimat JP; Becker M; Chiang YY; Marggraf U; Janasek D; Hengstler JG; Franzke J; West J
    Lab Chip; 2011 Jan; 11(2):231-7. PubMed ID: 20978708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic active loading of single cells enables analysis of complex clinical specimens.
    Calistri NL; Kimmerling RJ; Malinowski SW; Touat M; Stevens MM; Olcum S; Ligon KL; Manalis SR
    Nat Commun; 2018 Nov; 9(1):4784. PubMed ID: 30429479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips.
    Fan Y; Dong D; Li Q; Si H; Pei H; Li L; Tang B
    Lab Chip; 2018 Apr; 18(8):1151-1173. PubMed ID: 29541737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity.
    Zhao Y; Zhao XT; Chen DY; Luo YN; Jiang M; Wei C; Long R; Yue WT; Wang JB; Chen J
    Biosens Bioelectron; 2014 Jul; 57():245-53. PubMed ID: 24594591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells.
    Zhang K; Zhao LB; Guo SS; Shi BX; Lam TL; Leung YC; Chen Y; Zhao XZ; Chan HL; Wang Y
    Biosens Bioelectron; 2010 Oct; 26(2):935-9. PubMed ID: 20638834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device to sort cells based on dynamic response to a stimulus.
    Tan SJ; Kee MZ; Mathuru AS; Burkholder WF; Jesuthasan SJ
    PLoS One; 2013; 8(11):e78261. PubMed ID: 24250795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards microwave imaging of cells.
    Kelleci M; Aydogmus H; Aslanbas L; Erbil SO; Hanay MS
    Lab Chip; 2018 Jan; 18(3):463-472. PubMed ID: 29244051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a single cell of Chlorella in a microfluidic channel using amperometric electrode arrays.
    Song YS; Bai SJ
    Biotechnol Lett; 2014 Nov; 36(11):2185-91. PubMed ID: 24966046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel.
    Lin L; Mawatari K; Morikawa K; Kitamori T
    Anal Sci; 2016; 32(1):75-8. PubMed ID: 26753709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.