These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29687238)

  • 21. Robot-assisted procedures in pediatric neurosurgery.
    De Benedictis A; Trezza A; Carai A; Genovese E; Procaccini E; Messina R; Randi F; Cossu S; Esposito G; Palma P; Amante P; Rizzi M; Marras CE
    Neurosurg Focus; 2017 May; 42(5):E7. PubMed ID: 28463617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Results of using Spine Assist Mazor in surgical treatment of spine disorders.
    Dreval' ON; Rynkov IP; Kasparova KA; Bruskin A; Aleksandrovskiĭ V; Zil'bernshteĭn V
    Zh Vopr Neirokhir Im N N Burdenko; 2014; 78(3):14-20. PubMed ID: 25146652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimally invasive treatment of displaced femoral shaft fractures with a teleoperated robot-assisted surgical system.
    Zhu Q; Liang B; Wang X; Sun X; Wang L
    Injury; 2017 Oct; 48(10):2253-2259. PubMed ID: 28736125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiport minimally invasive skull base surgery: how many ports are too many?
    Moshel YA; Schwartz TH
    World Neurosurg; 2010 Jun; 73(6):632-3. PubMed ID: 20934144
    [No Abstract]   [Full Text] [Related]  

  • 25. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai DM; Chen B
    Proc Inst Mech Eng H; 2018 Feb; 232(2):135-148. PubMed ID: 29228866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated Navigational Systems.
    Smith JA; Jivraj J; Wong R; Yang V
    Ann Biomed Eng; 2016 Apr; 44(4):836-46. PubMed ID: 26467553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new markerless patient-to-image registration method using a portable 3D scanner.
    Fan Y; Jiang D; Wang M; Song Z
    Med Phys; 2014 Oct; 41(10):101910. PubMed ID: 25281962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Instrumentation in neurosurgery: nurturing the trend toward minimalism.
    Yashar P; Hopkins LN
    World Neurosurg; 2013; 80(3-4):240-2. PubMed ID: 22381330
    [No Abstract]   [Full Text] [Related]  

  • 29. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study.
    Hong WC; Tsai JC; Chang SD; Sorger JM
    Neurosurgery; 2013 Jan; 72 Suppl 1():33-8. PubMed ID: 23254810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The evolution of skull base surgery as seen through the endoscope.
    Cavallo LM; Esposito F
    World Neurosurg; 2010 Jun; 73(6):630-1. PubMed ID: 20934143
    [No Abstract]   [Full Text] [Related]  

  • 31. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wire-driven flexible manipulator with constrained spherical joints for minimally invasive surgery.
    Ji D; Kang TH; Shim S; Lee S; Hong J
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1365-1377. PubMed ID: 30997634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of the Olympus EndoArm for spinal and skull-based transsphenoidal neurosurgery.
    Eskandari R; Amini A; Yonemura KS; Couldwell WT
    Minim Invasive Neurosurg; 2008 Dec; 51(6):370-2. PubMed ID: 19061151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot.
    Grimm F; Naros G; Gutenberg A; Keric N; Giese A; Gharabaghi A
    J Neurosurg; 2015 Sep; 123(3):737-42. PubMed ID: 26067616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cable-driven distal end-effector mechanism for single-port robotic surgery.
    Wang Y; Cao Q; Zhu X; Wang P
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):301-309. PubMed ID: 33389605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bed-mounted laparoscopic surgical robot system with novel positioning arm mechanism.
    Chung DG; Hwang M; Cheon B; Kong D; Kang D; Lee DH; Kim CK; Kim D; Han JM; Kim YG; Kwon DS
    Int J Med Robot; 2022 Aug; 18(4):e2402. PubMed ID: 35384304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems.
    Hadavand M; Mirbagheri A; Behzadipour S; Farahmand F
    Int J Med Robot; 2014 Jun; 10(2):129-39. PubMed ID: 23733681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precision placement of instruments for minimally invasive procedures using a "needle driver" robot.
    Cleary K; Watson V; Lindisch D; Taylor RH; Fichtinger G; Xu S; White CS; Donlon J; Taylor M; Patriciu A; Mazilu D; Stoianovici D
    Int J Med Robot; 2005 Jan; 1(2):40-7. PubMed ID: 17518377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Telecontrolled micromanipulator system (NeuRobot) for minimally invasive neurosurgery.
    Hongo K; Goto T; Miyahara T; Kakizawa Y; Koyama J; Tanaka Y
    Acta Neurochir Suppl; 2006; 98():63-6. PubMed ID: 17009702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robotic arm enhancement to accommodate improved efficiency and decreased resource utilization in complex minimally invasive surgical procedures.
    Geis WP; Kim HC; Brennan EJ; McAfee PC; Wang Y
    Stud Health Technol Inform; 1996; 29():471-81. PubMed ID: 10172847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.