These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 29687334)
1. Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a D-psicose-3-epimerase gene from Agrobacterium tumefaciens for D-allulose production. Yang P; Zhu X; Zheng Z; Mu D; Jiang S; Luo S; Wu Y; Du M World J Microbiol Biotechnol; 2018 Apr; 34(5):65. PubMed ID: 29687334 [TBL] [Abstract][Full Text] [Related]
2. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production. Dedania SR; Patel MJ; Patel DM; Akhani RC; Patel DH Enzyme Microb Technol; 2017 Dec; 107():49-56. PubMed ID: 28899486 [TBL] [Abstract][Full Text] [Related]
3. Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. Park CS; Park CS; Shin KC; Oh DK J Biosci Bioeng; 2016 Feb; 121(2):186-90. PubMed ID: 26183861 [TBL] [Abstract][Full Text] [Related]
4. Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Kim HJ; Hyun EK; Kim YS; Lee YJ; Oh DK Appl Environ Microbiol; 2006 Feb; 72(2):981-5. PubMed ID: 16461638 [TBL] [Abstract][Full Text] [Related]
5. Production of d-Allulose with d-Psicose 3-Epimerase Expressed and Displayed on the Surface of Bacillus subtilis Spores. He W; Jiang B; Mu W; Zhang T J Agric Food Chem; 2016 Sep; 64(38):7201-7. PubMed ID: 27598572 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of Agrobacterium tumefaciensd-psicose 3-epimerase onto titanium dioxide for bioconversion of rare sugar. Dedania SR; Patel VK; Soni SS; Patel DH Enzyme Microb Technol; 2020 Oct; 140():109605. PubMed ID: 32912676 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a recombinant d-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. Tseng WC; Chen CN; Hsu CT; Lee HC; Fang HY; Wang MJ; Wu YH; Fang TY Int J Biol Macromol; 2018 Jun; 112():767-774. PubMed ID: 29427680 [TBL] [Abstract][Full Text] [Related]
9. High production of d-psicose from d-fructose by immobilized whole recombinant Bacillus subtilis cells expressing d-psicose 3-epimerase from Agrobacterium tumefaciens. Wang J; Sun J; Qi H; Wang L; Wang J; Li C Biotechnol Appl Biochem; 2022 Feb; 69(1):364-375. PubMed ID: 33533517 [TBL] [Abstract][Full Text] [Related]
10. Production of d-allulose from d-glucose by Escherichia coli transformant cells co-expressing d-glucose isomerase and d-psicose 3-epimerase genes. Zhang W; Li H; Jiang B; Zhang T; Mu W J Sci Food Agric; 2017 Aug; 97(10):3420-3426. PubMed ID: 28009059 [TBL] [Abstract][Full Text] [Related]
12. High Conversion of D-Fructose into D-Allulose by Enzymes Coupling with an ATP Regeneration System. Xiao Q; Niu J; Liu H; Liu Y; Zhou X Mol Biotechnol; 2019 Jun; 61(6):432-441. PubMed ID: 30963480 [TBL] [Abstract][Full Text] [Related]
13. Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Zhang J; Xu C; Chen X; Ruan X; Zhang Y; Xu H; Guo Y; Xu J; Lv P; Wang Z Enzyme Microb Technol; 2020 May; 136():109531. PubMed ID: 32331724 [TBL] [Abstract][Full Text] [Related]
14. A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization. Jia M; Mu W; Chu F; Zhang X; Jiang B; Zhou LL; Zhang T Appl Microbiol Biotechnol; 2014 Jan; 98(2):717-25. PubMed ID: 23644747 [TBL] [Abstract][Full Text] [Related]
15. Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase. Chen X; Wang W; Xu J; Yuan Z; Yuan T; Zhang Y; Liang C; He M; Guo Y Enzyme Microb Technol; 2017 Oct; 105():18-23. PubMed ID: 28756856 [TBL] [Abstract][Full Text] [Related]
16. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Zhang J; Zhang B; Wang D; Gao X; Sun L; Hong J Metab Eng; 2015 Sep; 31():140-52. PubMed ID: 26253204 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient production of Clostridium cellulolyticum H10 D-psicose 3-epimerase in Bacillus subtilis and use of these cells to produce D-psicose. Su L; Sun F; Liu Z; Zhang K; Wu J Microb Cell Fact; 2018 Nov; 17(1):188. PubMed ID: 30486886 [TBL] [Abstract][Full Text] [Related]
18. X-ray structure of Arthrobacter globiformis M30 ketose 3-epimerase for the production of D-allulose from D-fructose. Yoshida H; Yoshihara A; Gullapalli PK; Ohtani K; Akimitsu K; Izumori K; Kamitori S Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):669-676. PubMed ID: 30279320 [TBL] [Abstract][Full Text] [Related]
19. Conversion shift of D-fructose to D-psicose for enzyme-catalyzed epimerization by addition of borate. Kim NH; Kim HJ; Kang DI; Jeong KW; Lee JK; Kim Y; Oh DK Appl Environ Microbiol; 2008 May; 74(10):3008-13. PubMed ID: 18378642 [TBL] [Abstract][Full Text] [Related]
20. Construction of a Food Grade Recombinant Bacillus subtilis Based on Replicative Plasmids with an Auxotrophic Marker for Biotransformation of d-Fructose to d-Allulose. He W; Mu W; Jiang B; Yan X; Zhang T J Agric Food Chem; 2016 Apr; 64(16):3243-50. PubMed ID: 27056339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]